Spaces:
Runtime error
Runtime error
File size: 1,368 Bytes
ef6dece |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from transformers import BertTokenizer, BertModel
import torch
from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd
import numpy as np
import time
loaded_model = BertModel.from_pretrained('model')
loaded_tokenizer = BertTokenizer.from_pretrained('tokenizer')
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def filter_by_ganre(df: pd.DataFrame, ganre_list: list):
filtered_df = df[df['ganres'].apply(lambda x: any(g in ganre_list for g in(x)))]
return filtered_df
end_time = time.time()
def recommendation(df: pd.DataFrame, embeddings:np.array, user_text: str, n=10):
start_time = time.time()
tokens = loaded_tokenizer(user_text, return_tensors="pt", padding=True, truncation=True)
loaded_model.to(device)
loaded_model.eval()
with torch.no_grad():
tokens = {key: value.to(loaded_model.device) for key, value in tokens.items()}
outputs = loaded_model(**tokens)
user_embedding = output.last_hidden_state.mean(dim=1).squeeze().cpu().detach().numpy()
cosine_similarities = cosine_similarity(embeddings, user_embedding.reshape(1, -1))
df_res = pd.DataFrame(cosine_similarities.ravel(), columns=['cos_sim']).sort_values('cos_sim', ascending=False)
dict_topn = df_res.iloc[:n, :].cos_sim.to_dict()
end_time = time.time()
return dict_topn
|