Create app.py
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,243 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # -*- coding: utf-8 -*-
         | 
| 2 | 
            +
            """
         | 
| 3 | 
            +
            AG-BPE Standalone Usage Script & Web Visualizer
         | 
| 4 | 
            +
            ================================================
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            This script demonstrates how to load and use a pre-trained AG-BPE tokenizer
         | 
| 7 | 
            +
            and provides a real-time web interface using Gradio to visualize its behavior.
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            It defines a self-contained AGBPETokenizer class and then launches a web app
         | 
| 10 | 
            +
            that allows users to type text and see the tokenization and corresponding IDs
         | 
| 11 | 
            +
            update live.
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            This entire script is designed to be run as a single file in a Hugging Face Space.
         | 
| 14 | 
            +
            """
         | 
| 15 | 
            +
            import json
         | 
| 16 | 
            +
            import regex as re
         | 
| 17 | 
            +
            from pathlib import Path
         | 
| 18 | 
            +
            from typing import List, Dict, Tuple
         | 
| 19 | 
            +
            import unicodedata
         | 
| 20 | 
            +
            import gradio as gr
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            # --- TextCleaner Class ---
         | 
| 23 | 
            +
            # This class is included to ensure that the input text is pre-processed
         | 
| 24 | 
            +
            # in exactly the same way as during the tokenizer's training.
         | 
| 25 | 
            +
            class TextCleaner:
         | 
| 26 | 
            +
                """A text cleaner for AI datasets, designed to remove invisible, abnormal, and disruptive characters."""
         | 
| 27 | 
            +
                UNWANTED_CHARS = {
         | 
| 28 | 
            +
                    '\ufffd', '\u200b', '\u200c', '\u200d', '\u2060', '\u2061', '\u2063',
         | 
| 29 | 
            +
                    '\u00a0', '\u202f', '\u2007', '\u2028', '\u2029', '\ufeff', '\ue000',
         | 
| 30 | 
            +
                    '\uf8ff', '\ue001', '\xad', '\u180e', '\u200e', '\uFE0F',
         | 
| 31 | 
            +
                }
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                @classmethod
         | 
| 34 | 
            +
                def clean_text(cls, text: str) -> str:
         | 
| 35 | 
            +
                    """Cleans a given string by normalizing it, removing unwanted characters, and collapsing whitespace."""
         | 
| 36 | 
            +
                    text = unicodedata.normalize("NFKC", text)
         | 
| 37 | 
            +
                    text = text.replace('’', "'").replace('‘', "'")
         | 
| 38 | 
            +
                    text = text.replace('“', '"').replace('”', '"')
         | 
| 39 | 
            +
                    for char in cls.UNWANTED_CHARS:
         | 
| 40 | 
            +
                        text = text.replace(char, '')
         | 
| 41 | 
            +
                    text = ''.join(c for c in text if ord(c) >= 32 or c in '\n\r\t')
         | 
| 42 | 
            +
                    text = re.sub(r'\s+', ' ', text)
         | 
| 43 | 
            +
                    return text.strip()
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            # --- Standalone Tokenizer Class ---
         | 
| 46 | 
            +
            class AGBPETokenizer:
         | 
| 47 | 
            +
                """
         | 
| 48 | 
            +
                A self-contained tokenizer that loads and uses a pre-trained AG-BPE model
         | 
| 49 | 
            +
                from a JSON file containing the vocabulary and merge rules.
         | 
| 50 | 
            +
                """
         | 
| 51 | 
            +
                def __init__(self, vocab: Dict[str, int], merges: Dict[str, int], special_tokens: Dict[str, int]):
         | 
| 52 | 
            +
                    """Initializes the tokenizer from loaded vocabulary and merge data."""
         | 
| 53 | 
            +
                    self.vocab = vocab
         | 
| 54 | 
            +
                    self.merges = {tuple(k.split()): v for k, v in merges.items()}
         | 
| 55 | 
            +
                    self.special_tokens_map = special_tokens
         | 
| 56 | 
            +
                    self.id_to_token: Dict[int, str] = {i: s for s, i in self.vocab.items()}
         | 
| 57 | 
            +
                    self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
         | 
| 58 | 
            +
                    self.unk_token_id = self.vocab.get('<unk>')
         | 
| 59 | 
            +
                    if self.unk_token_id is None:
         | 
| 60 | 
            +
                        raise ValueError("The '<unk>' token is missing from the vocabulary.")
         | 
| 61 | 
            +
                    self.text_cleaner = TextCleaner()
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                @classmethod
         | 
| 64 | 
            +
                def from_file(cls, filepath: str) -> 'AGBPETokenizer':
         | 
| 65 | 
            +
                    """Class method to conveniently load a tokenizer from a JSON file path."""
         | 
| 66 | 
            +
                    path = Path(filepath)
         | 
| 67 | 
            +
                    if not path.exists():
         | 
| 68 | 
            +
                        raise FileNotFoundError(f"Tokenizer file not found: '{filepath}'")
         | 
| 69 | 
            +
                    with open(path, 'r', encoding='utf-8') as f:
         | 
| 70 | 
            +
                        data = json.load(f)
         | 
| 71 | 
            +
                    required_keys = ['vocab', 'merges', 'special_tokens']
         | 
| 72 | 
            +
                    if not all(key in data for key in required_keys):
         | 
| 73 | 
            +
                        raise ValueError("The JSON file is malformed. Missing one of: vocab, merges, special_tokens.")
         | 
| 74 | 
            +
                    return cls(data['vocab'], data['merges'], data['special_tokens'])
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                def _apply_bpe(self, word_chars: List[str]) -> List[str]:
         | 
| 77 | 
            +
                    """Applies the BPE merge rules to a list of characters, with a crucial validation step."""
         | 
| 78 | 
            +
                    if not self.merges:
         | 
| 79 | 
            +
                        return word_chars
         | 
| 80 | 
            +
                    while len(word_chars) > 1:
         | 
| 81 | 
            +
                        pairs = list(zip(word_chars[:-1], word_chars[1:]))
         | 
| 82 | 
            +
                        local_merges = self.merges.copy()
         | 
| 83 | 
            +
                        best_pair = None
         | 
| 84 | 
            +
                        while True:
         | 
| 85 | 
            +
                            if not local_merges:
         | 
| 86 | 
            +
                                best_pair = None
         | 
| 87 | 
            +
                                break
         | 
| 88 | 
            +
                            valid_pairs_in_word = (p for p in pairs if p in local_merges)
         | 
| 89 | 
            +
                            current_best_pair = min(valid_pairs_in_word, key=local_merges.get, default=None)
         | 
| 90 | 
            +
                            if current_best_pair is None:
         | 
| 91 | 
            +
                                best_pair = None
         | 
| 92 | 
            +
                                break
         | 
| 93 | 
            +
                            merged_token = current_best_pair[0] + current_best_pair[1]
         | 
| 94 | 
            +
                            if merged_token in self.vocab:
         | 
| 95 | 
            +
                                best_pair = current_best_pair
         | 
| 96 | 
            +
                                break
         | 
| 97 | 
            +
                            else:
         | 
| 98 | 
            +
                                del local_merges[current_best_pair]
         | 
| 99 | 
            +
                        if best_pair is None:
         | 
| 100 | 
            +
                            break
         | 
| 101 | 
            +
                        new_word_chars = []
         | 
| 102 | 
            +
                        i = 0
         | 
| 103 | 
            +
                        while i < len(word_chars):
         | 
| 104 | 
            +
                            if i < len(word_chars) - 1 and (word_chars[i], word_chars[i+1]) == best_pair:
         | 
| 105 | 
            +
                                new_word_chars.append(word_chars[i] + word_chars[i+1])
         | 
| 106 | 
            +
                                i += 2
         | 
| 107 | 
            +
                            else:
         | 
| 108 | 
            +
                                new_word_chars.append(word_chars[i])
         | 
| 109 | 
            +
                                i += 1
         | 
| 110 | 
            +
                        word_chars = new_word_chars
         | 
| 111 | 
            +
                    return word_chars
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                def encode(self, text: str, add_special_tokens: bool = True) -> List[int]:
         | 
| 114 | 
            +
                    """Encodes a string of text into a list of token IDs."""
         | 
| 115 | 
            +
                    cleaned_text = self.text_cleaner.clean_text(text)
         | 
| 116 | 
            +
                    token_ids = []
         | 
| 117 | 
            +
                    if add_special_tokens and (bos_id := self.special_tokens_map.get('<bos>')) is not None:
         | 
| 118 | 
            +
                        token_ids.append(bos_id)
         | 
| 119 | 
            +
                    for chunk in self.pat.findall(cleaned_text):
         | 
| 120 | 
            +
                        tokens = self._apply_bpe(list(chunk))
         | 
| 121 | 
            +
                        token_ids.extend(self.vocab.get(token, self.unk_token_id) for token in tokens)
         | 
| 122 | 
            +
                    if add_special_tokens and (eos_id := self.special_tokens_map.get('<eos>')) is not None:
         | 
| 123 | 
            +
                        token_ids.append(eos_id)
         | 
| 124 | 
            +
                    return token_ids
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                def decode(self, token_ids: List[int]) -> str:
         | 
| 127 | 
            +
                    """Decodes a list of token IDs back into a string of text."""
         | 
| 128 | 
            +
                    special_ids_to_skip = set(self.special_tokens_map.values())
         | 
| 129 | 
            +
                    tokens = [self.id_to_token.get(token_id, '') for token_id in token_ids if token_id not in special_ids_to_skip]
         | 
| 130 | 
            +
                    return "".join(tokens)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
             | 
| 133 | 
            +
            # --- Gradio Web Application ---
         | 
| 134 | 
            +
             | 
| 135 | 
            +
            # 1. Définir le chemin vers le fichier du tokenizer.
         | 
| 136 | 
            +
            #    Assurez-vous que ce fichier est présent dans votre Space Hugging Face.
         | 
| 137 | 
            +
            TOKENIZER_FILE = "ag_bpe_tokenizer.json"
         | 
| 138 | 
            +
            TOKENIZER_LOADED = False
         | 
| 139 | 
            +
            ERROR_MESSAGE = ""
         | 
| 140 | 
            +
            tokenizer = None
         | 
| 141 | 
            +
             | 
| 142 | 
            +
            # 2. Essayer de charger le tokenizer au démarrage de l'application.
         | 
| 143 | 
            +
            try:
         | 
| 144 | 
            +
                # Création d'un fichier factice si celui-ci n'existe pas (pour test local facile)
         | 
| 145 | 
            +
                if not Path(TOKENIZER_FILE).exists():
         | 
| 146 | 
            +
                    print(f"⚠️  Attention : Le fichier '{TOKENIZER_FILE}' est introuvable.")
         | 
| 147 | 
            +
                    print("Création d'un fichier tokenizer factice pour le test local.")
         | 
| 148 | 
            +
                    dummy_data = {
         | 
| 149 | 
            +
                        "vocab": {"<unk>": 0, "<bos>": 1, "<eos>": 2, "Hel": 3, "lo": 4, "W": 5, "orld": 6, "HelloWorld": 7, " ": 8},
         | 
| 150 | 
            +
                        "merges": {"H e l": 1, "l o": 2, "W o r l d": 3, "Hello World": 4},
         | 
| 151 | 
            +
                        "special_tokens": {"<unk>": 0, "<bos>": 1, "<eos>": 2}
         | 
| 152 | 
            +
                    }
         | 
| 153 | 
            +
                    with open(TOKENIZER_FILE, 'w', encoding='utf-8') as f:
         | 
| 154 | 
            +
                        json.dump(dummy_data, f, indent=2)
         | 
| 155 | 
            +
                    print("Fichier factice créé. L'application utilisera ce fichier.")
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                print(f"🧠 Chargement du tokenizer depuis '{TOKENIZER_FILE}'...")
         | 
| 158 | 
            +
                tokenizer = AGBPETokenizer.from_file(TOKENIZER_FILE)
         | 
| 159 | 
            +
                TOKENIZER_LOADED = True
         | 
| 160 | 
            +
                print(f"✅ Tokenizer chargé avec succès. Taille du vocabulaire : {len(tokenizer.vocab)}")
         | 
| 161 | 
            +
             | 
| 162 | 
            +
            except (FileNotFoundError, ValueError, KeyError) as e:
         | 
| 163 | 
            +
                ERROR_MESSAGE = str(e)
         | 
| 164 | 
            +
                print(f"❌ ERREUR lors du chargement du tokenizer : {ERROR_MESSAGE}")
         | 
| 165 | 
            +
             | 
| 166 | 
            +
             | 
| 167 | 
            +
            # 3. Définir la fonction principale qui sera appelée par Gradio.
         | 
| 168 | 
            +
            def visualize_tokenization(text: str) -> List[Tuple[str, str]]:
         | 
| 169 | 
            +
                """
         | 
| 170 | 
            +
                Prend un texte en entrée, le tokenize et renvoie une liste de tuples
         | 
| 171 | 
            +
                (token, id) pour l'affichage avec gr.HighlightedText.
         | 
| 172 | 
            +
                """
         | 
| 173 | 
            +
                if not TOKENIZER_LOADED or not tokenizer:
         | 
| 174 | 
            +
                    return [("ERREUR LORS DU CHARGEMENT DU TOKENIZER", ERROR_MESSAGE)]
         | 
| 175 | 
            +
                
         | 
| 176 | 
            +
                if not text:
         | 
| 177 | 
            +
                    return [("Veuillez entrer du texte...", "")]
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                # Encoder le texte pour obtenir les IDs des tokens.
         | 
| 180 | 
            +
                # add_special_tokens=False pour ne pas afficher <bos> et <eos> dans la démo.
         | 
| 181 | 
            +
                encoded_ids = tokenizer.encode(text, add_special_tokens=False)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                # Préparer la sortie pour le composant HighlightedText.
         | 
| 184 | 
            +
                # Le format est une liste de tuples (token_string, label).
         | 
| 185 | 
            +
                highlighted_output = []
         | 
| 186 | 
            +
                for token_id in encoded_ids:
         | 
| 187 | 
            +
                    # Récupérer la chaîne de caractères du token à partir de son ID.
         | 
| 188 | 
            +
                    token_string = tokenizer.id_to_token.get(token_id, f"<unk:{token_id}>")
         | 
| 189 | 
            +
                    # Le label sera l'ID du token.
         | 
| 190 | 
            +
                    highlighted_output.append((token_string, str(token_id)))
         | 
| 191 | 
            +
                
         | 
| 192 | 
            +
                return highlighted_output
         | 
| 193 | 
            +
             | 
| 194 | 
            +
            # 4. Construire l'interface Gradio.
         | 
| 195 | 
            +
            with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky"), css="footer {display: none !important}") as demo:
         | 
| 196 | 
            +
                gr.Markdown(
         | 
| 197 | 
            +
                    """
         | 
| 198 | 
            +
                    # 👁️ Visualiseur de Tokenizer en Temps Réel
         | 
| 199 | 
            +
                    Entrez du texte dans le champ ci-dessous pour observer la segmentation (tokenization) en direct.
         | 
| 200 | 
            +
                    Chaque segment de texte coloré est un "token", et son ID numérique est affiché juste en dessous.
         | 
| 201 | 
            +
                    """
         | 
| 202 | 
            +
                )
         | 
| 203 | 
            +
                
         | 
| 204 | 
            +
                with gr.Column():
         | 
| 205 | 
            +
                    input_textbox = gr.Textbox(
         | 
| 206 | 
            +
                        label="Entrez votre texte ici",
         | 
| 207 | 
            +
                        placeholder="Écrivez quelque chose...",
         | 
| 208 | 
            +
                        lines=7,
         | 
| 209 | 
            +
                        show_label=False,
         | 
| 210 | 
            +
                    )
         | 
| 211 | 
            +
                    
         | 
| 212 | 
            +
                    output_highlight = gr.HighlightedText(
         | 
| 213 | 
            +
                        label="Tokens et IDs",
         | 
| 214 | 
            +
                        show_label=False,
         | 
| 215 | 
            +
                        interactive=True, # Permet de sélectionner le texte
         | 
| 216 | 
            +
                        combine_consecutive=True,
         | 
| 217 | 
            +
                        show_legend=True,
         | 
| 218 | 
            +
                        color_map={"ID": "lightblue"} # Simple color map
         | 
| 219 | 
            +
                    )
         | 
| 220 | 
            +
                
         | 
| 221 | 
            +
                # Lier l'événement 'input' (chaque frappe) du champ de texte à notre fonction.
         | 
| 222 | 
            +
                # 'live=True' est une autre façon de le faire, mais .input() est plus explicite.
         | 
| 223 | 
            +
                input_textbox.input(
         | 
| 224 | 
            +
                    fn=visualize_tokenization,
         | 
| 225 | 
            +
                    inputs=[input_textbox],
         | 
| 226 | 
            +
                    outputs=[output_highlight]
         | 
| 227 | 
            +
                )
         | 
| 228 | 
            +
                
         | 
| 229 | 
            +
                # Ajouter un exemple pour guider l'utilisateur.
         | 
| 230 | 
            +
                gr.Examples(
         | 
| 231 | 
            +
                    examples=[
         | 
| 232 | 
            +
                        "L'intelligence artificielle est fascinante.",
         | 
| 233 | 
            +
                        "Test avec    des espaces multiples et des ’apostrophes’ typographiques.",
         | 
| 234 | 
            +
                        "Le code `if (x==10)` et les emojis 👍🚀 sont gérés.",
         | 
| 235 | 
            +
                        "Hello world! This is a test of the AG-BPE tokenizer.",
         | 
| 236 | 
            +
                        "안녕하세요"
         | 
| 237 | 
            +
                    ],
         | 
| 238 | 
            +
                    inputs=input_textbox
         | 
| 239 | 
            +
                )
         | 
| 240 | 
            +
             | 
| 241 | 
            +
            # 5. Lancer l'application (le point d'entrée pour Hugging Face Spaces).
         | 
| 242 | 
            +
            if __name__ == "__main__":
         | 
| 243 | 
            +
                demo.launch()
         |