Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import pysrt
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
if os.path.isdir(f'{os.getcwd() + os.sep}whisper.cpp'):
|
| 8 |
+
print("Models already loaded")
|
| 9 |
+
else:
|
| 10 |
+
os.system('git clone https://github.com/ggerganov/whisper.cpp.git')
|
| 11 |
+
os.system('git clone https://huggingface.co/Finnish-NLP/Finnish-finetuned-whisper-models-ggml-format')
|
| 12 |
+
os.system('make -C ./whisper.cpp')
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
whisper_models = ["medium", "large"]
|
| 17 |
+
whisper_modelpath_translator= {
|
| 18 |
+
"medium": "./Finnish-finetuned-whisper-models-ggml-format/ggml-model-fi-medium.bin",
|
| 19 |
+
"large": "./Finnish-finetuned-whisper-models-ggml-format/ggml-model-model-large-v3.bin"
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def speech_to_text(audio_path, whisper_model):
|
| 25 |
+
|
| 26 |
+
if(audio_path is None):
|
| 27 |
+
raise ValueError("Error no audio input")
|
| 28 |
+
print(audio_path)
|
| 29 |
+
try:
|
| 30 |
+
|
| 31 |
+
_,file_ending = os.path.splitext(f'{audio_path}')
|
| 32 |
+
print(f'file enging is {file_ending}')
|
| 33 |
+
print("starting conversion to wav")
|
| 34 |
+
os.system(f'ffmpeg -i "{audio_path}" -ar 16000 -y -ac 1 -c:a pcm_s16le "{audio_path.replace(file_ending, ".wav")}"')
|
| 35 |
+
print("conversion to wav ready")
|
| 36 |
+
|
| 37 |
+
except Exception as e:
|
| 38 |
+
raise RuntimeError(f'Error Running inference with local model: {e}') from e
|
| 39 |
+
|
| 40 |
+
try:
|
| 41 |
+
|
| 42 |
+
print("starting whisper c++")
|
| 43 |
+
srt_path = str(audio_path.replace(file_ending, ".wav")) + ".srt"
|
| 44 |
+
os.system(f'rm -f {srt_path}')
|
| 45 |
+
os.system(f'./whisper.cpp/main "{audio_path.replace(file_ending, ".wav")}" -t 4 -m ./{whisper_modelpath_translator.get(whisper_model)} -osrt')
|
| 46 |
+
print("starting whisper done with whisper")
|
| 47 |
+
except Exception as e:
|
| 48 |
+
raise RuntimeError(f'Error running Whisper cpp model: {e}') from e
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
|
| 52 |
+
df = pd.DataFrame(columns = ['start','end','text'])
|
| 53 |
+
srt_path = str(audio_path.replace(file_ending, ".wav")) + ".srt"
|
| 54 |
+
subs = pysrt.open(srt_path)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
rows = []
|
| 58 |
+
for sub in subs:
|
| 59 |
+
start_hours = str(str(sub.start.hours) + "00")[0:2] if len(str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2]
|
| 60 |
+
end_hours = str(str(sub.end.hours) + "00")[0:2] if len(str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2]
|
| 61 |
+
|
| 62 |
+
start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len(str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2]
|
| 63 |
+
end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len(str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2]
|
| 64 |
+
|
| 65 |
+
start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len(str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2]
|
| 66 |
+
end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len(str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2]
|
| 67 |
+
|
| 68 |
+
start_millis = str(str(sub.start.milliseconds) + "000")[0:3]
|
| 69 |
+
end_millis = str(str(sub.end.milliseconds) + "000")[0:3]
|
| 70 |
+
rows.append([sub.text, f'{start_hours}:{start_minutes}:{start_seconds}.{start_millis}', f'{end_hours}:{end_minutes}:{end_seconds}.{end_millis}'])
|
| 71 |
+
|
| 72 |
+
for row in rows:
|
| 73 |
+
srt_to_df = {
|
| 74 |
+
'start': [row[1]],
|
| 75 |
+
'end': [row[2]],
|
| 76 |
+
'text': [row[0]]
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
df = pd.concat([df, pd.DataFrame(srt_to_df)])
|
| 80 |
+
|
| 81 |
+
except Exception as e:
|
| 82 |
+
print(f"Error creating srt df with error: {e}")
|
| 83 |
+
|
| 84 |
+
return df
|
| 85 |
+
|
| 86 |
+
def output_to_files(df):
|
| 87 |
+
|
| 88 |
+
df.reset_index(inplace=True)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
print("Starting SRT-file creation")
|
| 92 |
+
print(df.head())
|
| 93 |
+
|
| 94 |
+
with open('subtitles.vtt','w', encoding="utf-8") as file:
|
| 95 |
+
print("Starting WEBVTT-file creation")
|
| 96 |
+
|
| 97 |
+
for i in range(len(df)):
|
| 98 |
+
if i == 0:
|
| 99 |
+
file.write('WEBVTT')
|
| 100 |
+
file.write('\n')
|
| 101 |
+
|
| 102 |
+
else:
|
| 103 |
+
file.write(str(i+1))
|
| 104 |
+
file.write('\n')
|
| 105 |
+
start = df.iloc[i]['start']
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
file.write(f"{start.strip()}")
|
| 109 |
+
|
| 110 |
+
stop = df.iloc[i]['end']
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
file.write(' --> ')
|
| 114 |
+
file.write(f"{stop}")
|
| 115 |
+
file.write('\n')
|
| 116 |
+
file.writelines(df.iloc[i]['text'])
|
| 117 |
+
if int(i) != len(df)-1:
|
| 118 |
+
file.write('\n\n')
|
| 119 |
+
|
| 120 |
+
print("WEBVTT DONE")
|
| 121 |
+
|
| 122 |
+
with open('subtitles.srt','w', encoding="utf-8") as file:
|
| 123 |
+
print("Starting SRT-file creation")
|
| 124 |
+
|
| 125 |
+
for i in range(len(df)):
|
| 126 |
+
file.write(str(i+1))
|
| 127 |
+
file.write('\n')
|
| 128 |
+
start = df.iloc[i]['start']
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
file.write(f"{start.strip()}")
|
| 132 |
+
|
| 133 |
+
stop = df.iloc[i]['end']
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
file.write(' --> ')
|
| 137 |
+
file.write(f"{stop}")
|
| 138 |
+
file.write('\n')
|
| 139 |
+
file.writelines(df.iloc[i]['text'])
|
| 140 |
+
if int(i) != len(df)-1:
|
| 141 |
+
file.write('\n\n')
|
| 142 |
+
|
| 143 |
+
print("SRT DONE")
|
| 144 |
+
subtitle_files_out = ['subtitles.vtt','subtitles.srt']
|
| 145 |
+
|
| 146 |
+
return subtitle_files_out
|
| 147 |
+
|
| 148 |
+
# ---- Gradio Layout -----
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
demo = gr.Blocks(css='''
|
| 155 |
+
#cut_btn, #reset_btn { align-self:stretch; }
|
| 156 |
+
#\\31 3 { max-width: 540px; }
|
| 157 |
+
.output-markdown {max-width: 65ch !important;}
|
| 158 |
+
''')
|
| 159 |
+
demo.encrypt = False
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
with demo:
|
| 163 |
+
with gr.Row():
|
| 164 |
+
with gr.Column():
|
| 165 |
+
gr.Markdown('''
|
| 166 |
+
# FINNISH Audio --> TEXT APP
|
| 167 |
+
### This space allows you to:
|
| 168 |
+
1. Insert audio file or record with microphone
|
| 169 |
+
2. Run audio through transcription process using speech recognition models
|
| 170 |
+
3. Download generated transcriptions in .vtt and .srt formats
|
| 171 |
+
''')
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
with gr.Row():
|
| 175 |
+
with gr.Column():
|
| 176 |
+
audio_in = gr.Audio(label="Audio file", type='filepath')
|
| 177 |
+
transcribe_btn = gr.Button("Step 1. Transcribe audio")
|
| 178 |
+
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="large", label="Selected Whisper model", interactive=True)
|
| 179 |
+
|
| 180 |
+
with gr.Row():
|
| 181 |
+
with gr.Column():
|
| 182 |
+
transcription_df = gr.DataFrame(headers = ['start','end','text'], label="Transcription dataframe")#, row_count=(1, "dynamic"))
|
| 183 |
+
|
| 184 |
+
with gr.Row():
|
| 185 |
+
with gr.Column():
|
| 186 |
+
translate_transcriptions_button = gr.Button("Step 2. Create subtitle files")
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
with gr.Row():
|
| 190 |
+
with gr.Column():
|
| 191 |
+
gr.Markdown('''##### From here you can download subtitles in .srt or .vtt format''')
|
| 192 |
+
subtitle_files = gr.File(
|
| 193 |
+
label="Download files",
|
| 194 |
+
file_count="multiple",
|
| 195 |
+
type="filepath",
|
| 196 |
+
interactive=False,
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
# Functionalities
|
| 200 |
+
transcribe_btn.click(speech_to_text, [audio_in, selected_whisper_model], [transcription_df])
|
| 201 |
+
translate_transcriptions_button.click(output_to_files, transcription_df, [subtitle_files])
|
| 202 |
+
|
| 203 |
+
demo.launch()
|