Spaces:
Sleeping
Sleeping
Create rmvpe.py
Browse files- pitch/rmvpe.py +614 -0
pitch/rmvpe.py
ADDED
@@ -0,0 +1,614 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# These modules are licensed under the MIT License.
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from librosa.filters import mel
|
9 |
+
from librosa.util import pad_center, tiny, normalize
|
10 |
+
from scipy.signal import get_window
|
11 |
+
|
12 |
+
|
13 |
+
###stft codes from https://github.com/pseeth/torch-stft/blob/master/torch_stft/util.py
|
14 |
+
def window_sumsquare(
|
15 |
+
window,
|
16 |
+
n_frames,
|
17 |
+
hop_length=200,
|
18 |
+
win_length=800,
|
19 |
+
n_fft=800,
|
20 |
+
dtype=np.float32,
|
21 |
+
norm=None,
|
22 |
+
):
|
23 |
+
"""
|
24 |
+
# from librosa 0.6
|
25 |
+
Compute the sum-square envelope of a window function at a given hop length.
|
26 |
+
This is used to estimate modulation effects induced by windowing
|
27 |
+
observations in short-time fourier transforms.
|
28 |
+
Parameters
|
29 |
+
----------
|
30 |
+
window : string, tuple, number, callable, or list-like
|
31 |
+
Window specification, as in `get_window`
|
32 |
+
n_frames : int > 0
|
33 |
+
The number of analysis frames
|
34 |
+
hop_length : int > 0
|
35 |
+
The number of samples to advance between frames
|
36 |
+
win_length : [optional]
|
37 |
+
The length of the window function. By default, this matches `n_fft`.
|
38 |
+
n_fft : int > 0
|
39 |
+
The length of each analysis frame.
|
40 |
+
dtype : np.dtype
|
41 |
+
The data type of the output
|
42 |
+
Returns
|
43 |
+
-------
|
44 |
+
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
|
45 |
+
The sum-squared envelope of the window function
|
46 |
+
"""
|
47 |
+
if win_length is None:
|
48 |
+
win_length = n_fft
|
49 |
+
|
50 |
+
n = n_fft + hop_length * (n_frames - 1)
|
51 |
+
x = np.zeros(n, dtype=dtype)
|
52 |
+
|
53 |
+
# Compute the squared window at the desired length
|
54 |
+
win_sq = get_window(window, win_length, fftbins=True)
|
55 |
+
win_sq = normalize(win_sq, norm=norm) ** 2
|
56 |
+
win_sq = pad_center(win_sq, n_fft)
|
57 |
+
|
58 |
+
# Fill the envelope
|
59 |
+
for i in range(n_frames):
|
60 |
+
sample = i * hop_length
|
61 |
+
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
|
62 |
+
return x
|
63 |
+
|
64 |
+
|
65 |
+
class STFT(torch.nn.Module):
|
66 |
+
def __init__(
|
67 |
+
self, filter_length=1024, hop_length=512, win_length=None, window="hann"
|
68 |
+
):
|
69 |
+
"""
|
70 |
+
This module implements an STFT using 1D convolution and 1D transpose convolutions.
|
71 |
+
This is a bit tricky so there are some cases that probably won't work as working
|
72 |
+
out the same sizes before and after in all overlap add setups is tough. Right now,
|
73 |
+
this code should work with hop lengths that are half the filter length (50% overlap
|
74 |
+
between frames).
|
75 |
+
|
76 |
+
Keyword Arguments:
|
77 |
+
filter_length {int} -- Length of filters used (default: {1024})
|
78 |
+
hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
|
79 |
+
win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
|
80 |
+
equals the filter length). (default: {None})
|
81 |
+
window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris)
|
82 |
+
(default: {'hann'})
|
83 |
+
"""
|
84 |
+
super(STFT, self).__init__()
|
85 |
+
self.filter_length = filter_length
|
86 |
+
self.hop_length = hop_length
|
87 |
+
self.win_length = win_length or filter_length
|
88 |
+
self.window = window
|
89 |
+
self.forward_transform = None
|
90 |
+
self.pad_amount = int(self.filter_length / 2)
|
91 |
+
scale = self.filter_length / self.hop_length
|
92 |
+
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
93 |
+
|
94 |
+
cutoff = int((self.filter_length / 2 + 1))
|
95 |
+
fourier_basis = np.vstack(
|
96 |
+
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
|
97 |
+
)
|
98 |
+
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
99 |
+
inverse_basis = torch.FloatTensor(
|
100 |
+
np.linalg.pinv(scale * fourier_basis).T[:, None, :]
|
101 |
+
)
|
102 |
+
|
103 |
+
assert filter_length >= self.win_length
|
104 |
+
# get window and zero center pad it to filter_length
|
105 |
+
fft_window = get_window(window, self.win_length, fftbins=True)
|
106 |
+
fft_window = pad_center(fft_window, size=filter_length)
|
107 |
+
fft_window = torch.from_numpy(fft_window).float()
|
108 |
+
|
109 |
+
# window the bases
|
110 |
+
forward_basis *= fft_window
|
111 |
+
inverse_basis *= fft_window
|
112 |
+
|
113 |
+
self.register_buffer("forward_basis", forward_basis.float())
|
114 |
+
self.register_buffer("inverse_basis", inverse_basis.float())
|
115 |
+
|
116 |
+
def transform(self, input_data):
|
117 |
+
"""Take input data (audio) to STFT domain.
|
118 |
+
|
119 |
+
Arguments:
|
120 |
+
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
|
124 |
+
num_frequencies, num_frames)
|
125 |
+
phase {tensor} -- Phase of STFT with shape (num_batch,
|
126 |
+
num_frequencies, num_frames)
|
127 |
+
"""
|
128 |
+
num_batches = input_data.shape[0]
|
129 |
+
num_samples = input_data.shape[-1]
|
130 |
+
|
131 |
+
self.num_samples = num_samples
|
132 |
+
|
133 |
+
# similar to librosa, reflect-pad the input
|
134 |
+
input_data = input_data.view(num_batches, 1, num_samples)
|
135 |
+
# print(1234,input_data.shape)
|
136 |
+
input_data = F.pad(
|
137 |
+
input_data.unsqueeze(1),
|
138 |
+
(self.pad_amount, self.pad_amount, 0, 0, 0, 0),
|
139 |
+
mode="reflect",
|
140 |
+
).squeeze(1)
|
141 |
+
|
142 |
+
forward_transform = F.conv1d(
|
143 |
+
input_data, self.forward_basis, stride=self.hop_length, padding=0
|
144 |
+
)
|
145 |
+
|
146 |
+
cutoff = int((self.filter_length / 2) + 1)
|
147 |
+
real_part = forward_transform[:, :cutoff, :]
|
148 |
+
imag_part = forward_transform[:, cutoff:, :]
|
149 |
+
|
150 |
+
return torch.sqrt(real_part**2 + imag_part**2)
|
151 |
+
|
152 |
+
def inverse(self, magnitude, phase):
|
153 |
+
"""Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
|
154 |
+
by the ```transform``` function.
|
155 |
+
|
156 |
+
Arguments:
|
157 |
+
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
|
158 |
+
num_frequencies, num_frames)
|
159 |
+
phase {tensor} -- Phase of STFT with shape (num_batch,
|
160 |
+
num_frequencies, num_frames)
|
161 |
+
|
162 |
+
Returns:
|
163 |
+
inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
|
164 |
+
shape (num_batch, num_samples)
|
165 |
+
"""
|
166 |
+
recombine_magnitude_phase = torch.cat(
|
167 |
+
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
168 |
+
)
|
169 |
+
|
170 |
+
inverse_transform = F.conv_transpose1d(
|
171 |
+
recombine_magnitude_phase,
|
172 |
+
self.inverse_basis,
|
173 |
+
stride=self.hop_length,
|
174 |
+
padding=0,
|
175 |
+
)
|
176 |
+
|
177 |
+
if self.window is not None:
|
178 |
+
window_sum = window_sumsquare(
|
179 |
+
self.window,
|
180 |
+
magnitude.size(-1),
|
181 |
+
hop_length=self.hop_length,
|
182 |
+
win_length=self.win_length,
|
183 |
+
n_fft=self.filter_length,
|
184 |
+
dtype=np.float32,
|
185 |
+
)
|
186 |
+
# remove modulation effects
|
187 |
+
approx_nonzero_indices = torch.from_numpy(
|
188 |
+
np.where(window_sum > tiny(window_sum))[0]
|
189 |
+
)
|
190 |
+
window_sum = torch.from_numpy(window_sum).to(inverse_transform.device)
|
191 |
+
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
|
192 |
+
approx_nonzero_indices
|
193 |
+
]
|
194 |
+
|
195 |
+
# scale by hop ratio
|
196 |
+
inverse_transform *= float(self.filter_length) / self.hop_length
|
197 |
+
|
198 |
+
inverse_transform = inverse_transform[..., self.pad_amount :]
|
199 |
+
inverse_transform = inverse_transform[..., : self.num_samples]
|
200 |
+
return inverse_transform.squeeze(1)
|
201 |
+
|
202 |
+
def forward(self, input_data):
|
203 |
+
"""Take input data (audio) to STFT domain and then back to audio.
|
204 |
+
|
205 |
+
Arguments:
|
206 |
+
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
|
207 |
+
|
208 |
+
Returns:
|
209 |
+
reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of
|
210 |
+
shape (num_batch, num_samples)
|
211 |
+
"""
|
212 |
+
self.magnitude, self.phase = self.transform(input_data)
|
213 |
+
return self.inverse(self.magnitude, self.phase)
|
214 |
+
|
215 |
+
|
216 |
+
class BiGRU(nn.Module):
|
217 |
+
def __init__(self, input_features, hidden_features, num_layers):
|
218 |
+
super(BiGRU, self).__init__()
|
219 |
+
self.gru = nn.GRU(
|
220 |
+
input_features,
|
221 |
+
hidden_features,
|
222 |
+
num_layers=num_layers,
|
223 |
+
batch_first=True,
|
224 |
+
bidirectional=True,
|
225 |
+
)
|
226 |
+
|
227 |
+
def forward(self, x):
|
228 |
+
return self.gru(x)[0]
|
229 |
+
|
230 |
+
|
231 |
+
class ConvBlockRes(nn.Module):
|
232 |
+
def __init__(self, in_channels, out_channels, momentum=0.01):
|
233 |
+
super(ConvBlockRes, self).__init__()
|
234 |
+
self.conv = nn.Sequential(
|
235 |
+
nn.Conv2d(
|
236 |
+
in_channels=in_channels,
|
237 |
+
out_channels=out_channels,
|
238 |
+
kernel_size=(3, 3),
|
239 |
+
stride=(1, 1),
|
240 |
+
padding=(1, 1),
|
241 |
+
bias=False,
|
242 |
+
),
|
243 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
244 |
+
nn.ReLU(),
|
245 |
+
nn.Conv2d(
|
246 |
+
in_channels=out_channels,
|
247 |
+
out_channels=out_channels,
|
248 |
+
kernel_size=(3, 3),
|
249 |
+
stride=(1, 1),
|
250 |
+
padding=(1, 1),
|
251 |
+
bias=False,
|
252 |
+
),
|
253 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
254 |
+
nn.ReLU(),
|
255 |
+
)
|
256 |
+
if in_channels != out_channels:
|
257 |
+
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
258 |
+
self.is_shortcut = True
|
259 |
+
else:
|
260 |
+
self.is_shortcut = False
|
261 |
+
|
262 |
+
def forward(self, x):
|
263 |
+
if self.is_shortcut:
|
264 |
+
return self.conv(x) + self.shortcut(x)
|
265 |
+
else:
|
266 |
+
return self.conv(x) + x
|
267 |
+
|
268 |
+
|
269 |
+
class Encoder(nn.Module):
|
270 |
+
def __init__(
|
271 |
+
self,
|
272 |
+
in_channels,
|
273 |
+
in_size,
|
274 |
+
n_encoders,
|
275 |
+
kernel_size,
|
276 |
+
n_blocks,
|
277 |
+
out_channels=16,
|
278 |
+
momentum=0.01,
|
279 |
+
):
|
280 |
+
super(Encoder, self).__init__()
|
281 |
+
self.n_encoders = n_encoders
|
282 |
+
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
283 |
+
self.layers = nn.ModuleList()
|
284 |
+
self.latent_channels = []
|
285 |
+
for _ in range(self.n_encoders):
|
286 |
+
self.layers.append(
|
287 |
+
ResEncoderBlock(
|
288 |
+
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
289 |
+
)
|
290 |
+
)
|
291 |
+
self.latent_channels.append([out_channels, in_size])
|
292 |
+
in_channels = out_channels
|
293 |
+
out_channels *= 2
|
294 |
+
in_size //= 2
|
295 |
+
self.out_size = in_size
|
296 |
+
self.out_channel = out_channels
|
297 |
+
|
298 |
+
def forward(self, x):
|
299 |
+
concat_tensors = []
|
300 |
+
x = self.bn(x)
|
301 |
+
for i in range(self.n_encoders):
|
302 |
+
_, x = self.layers[i](x)
|
303 |
+
concat_tensors.append(_)
|
304 |
+
return x, concat_tensors
|
305 |
+
|
306 |
+
|
307 |
+
class ResEncoderBlock(nn.Module):
|
308 |
+
def __init__(
|
309 |
+
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
310 |
+
):
|
311 |
+
super(ResEncoderBlock, self).__init__()
|
312 |
+
self.n_blocks = n_blocks
|
313 |
+
self.conv = nn.ModuleList()
|
314 |
+
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
315 |
+
for _ in range(n_blocks - 1):
|
316 |
+
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
317 |
+
self.kernel_size = kernel_size
|
318 |
+
if self.kernel_size is not None:
|
319 |
+
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
320 |
+
|
321 |
+
def forward(self, x):
|
322 |
+
for i in range(self.n_blocks):
|
323 |
+
x = self.conv[i](x)
|
324 |
+
return (x, self.pool(x)) if self.kernel_size is not None else x
|
325 |
+
|
326 |
+
|
327 |
+
class Intermediate(nn.Module): #
|
328 |
+
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
329 |
+
super(Intermediate, self).__init__()
|
330 |
+
self.n_inters = n_inters
|
331 |
+
self.layers = nn.ModuleList()
|
332 |
+
self.layers.append(
|
333 |
+
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
334 |
+
)
|
335 |
+
for _ in range(self.n_inters - 1):
|
336 |
+
self.layers.append(
|
337 |
+
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
338 |
+
)
|
339 |
+
|
340 |
+
def forward(self, x):
|
341 |
+
for i in range(self.n_inters):
|
342 |
+
x = self.layers[i](x)
|
343 |
+
return x
|
344 |
+
|
345 |
+
|
346 |
+
class ResDecoderBlock(nn.Module):
|
347 |
+
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
348 |
+
super(ResDecoderBlock, self).__init__()
|
349 |
+
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
350 |
+
self.n_blocks = n_blocks
|
351 |
+
self.conv1 = nn.Sequential(
|
352 |
+
nn.ConvTranspose2d(
|
353 |
+
in_channels=in_channels,
|
354 |
+
out_channels=out_channels,
|
355 |
+
kernel_size=(3, 3),
|
356 |
+
stride=stride,
|
357 |
+
padding=(1, 1),
|
358 |
+
output_padding=out_padding,
|
359 |
+
bias=False,
|
360 |
+
),
|
361 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
362 |
+
nn.ReLU(),
|
363 |
+
)
|
364 |
+
self.conv2 = nn.ModuleList()
|
365 |
+
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
366 |
+
for _ in range(n_blocks - 1):
|
367 |
+
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
368 |
+
|
369 |
+
def forward(self, x, concat_tensor):
|
370 |
+
x = self.conv1(x)
|
371 |
+
x = torch.cat((x, concat_tensor), dim=1)
|
372 |
+
for i in range(self.n_blocks):
|
373 |
+
x = self.conv2[i](x)
|
374 |
+
return x
|
375 |
+
|
376 |
+
|
377 |
+
class Decoder(nn.Module):
|
378 |
+
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
379 |
+
super(Decoder, self).__init__()
|
380 |
+
self.layers = nn.ModuleList()
|
381 |
+
self.n_decoders = n_decoders
|
382 |
+
for _ in range(self.n_decoders):
|
383 |
+
out_channels = in_channels // 2
|
384 |
+
self.layers.append(
|
385 |
+
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
386 |
+
)
|
387 |
+
in_channels = out_channels
|
388 |
+
|
389 |
+
def forward(self, x, concat_tensors):
|
390 |
+
for i in range(self.n_decoders):
|
391 |
+
x = self.layers[i](x, concat_tensors[-1 - i])
|
392 |
+
return x
|
393 |
+
|
394 |
+
|
395 |
+
class DeepUnet(nn.Module):
|
396 |
+
def __init__(
|
397 |
+
self,
|
398 |
+
kernel_size,
|
399 |
+
n_blocks,
|
400 |
+
en_de_layers=5,
|
401 |
+
inter_layers=4,
|
402 |
+
in_channels=1,
|
403 |
+
en_out_channels=16,
|
404 |
+
):
|
405 |
+
super(DeepUnet, self).__init__()
|
406 |
+
self.encoder = Encoder(
|
407 |
+
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
408 |
+
)
|
409 |
+
self.intermediate = Intermediate(
|
410 |
+
self.encoder.out_channel // 2,
|
411 |
+
self.encoder.out_channel,
|
412 |
+
inter_layers,
|
413 |
+
n_blocks,
|
414 |
+
)
|
415 |
+
self.decoder = Decoder(
|
416 |
+
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
417 |
+
)
|
418 |
+
|
419 |
+
def forward(self, x):
|
420 |
+
x, concat_tensors = self.encoder(x)
|
421 |
+
x = self.intermediate(x)
|
422 |
+
x = self.decoder(x, concat_tensors)
|
423 |
+
return x
|
424 |
+
|
425 |
+
|
426 |
+
class E2E(nn.Module):
|
427 |
+
def __init__(
|
428 |
+
self,
|
429 |
+
n_blocks,
|
430 |
+
n_gru,
|
431 |
+
kernel_size,
|
432 |
+
en_de_layers=5,
|
433 |
+
inter_layers=4,
|
434 |
+
in_channels=1,
|
435 |
+
en_out_channels=16,
|
436 |
+
):
|
437 |
+
super(E2E, self).__init__()
|
438 |
+
self.unet = DeepUnet(
|
439 |
+
kernel_size,
|
440 |
+
n_blocks,
|
441 |
+
en_de_layers,
|
442 |
+
inter_layers,
|
443 |
+
in_channels,
|
444 |
+
en_out_channels,
|
445 |
+
)
|
446 |
+
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
447 |
+
if n_gru:
|
448 |
+
self.fc = nn.Sequential(
|
449 |
+
BiGRU(3 * 128, 256, n_gru),
|
450 |
+
nn.Linear(512, 360),
|
451 |
+
nn.Dropout(0.25),
|
452 |
+
nn.Sigmoid(),
|
453 |
+
)
|
454 |
+
else:
|
455 |
+
self.fc = nn.Sequential(
|
456 |
+
nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
457 |
+
)
|
458 |
+
|
459 |
+
def forward(self, mel):
|
460 |
+
# print(mel.shape)
|
461 |
+
mel = mel.transpose(-1, -2).unsqueeze(1)
|
462 |
+
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
463 |
+
x = self.fc(x)
|
464 |
+
return x
|
465 |
+
|
466 |
+
|
467 |
+
|
468 |
+
|
469 |
+
class MelSpectrogram(torch.nn.Module):
|
470 |
+
def __init__(
|
471 |
+
self,
|
472 |
+
is_half,
|
473 |
+
n_mel_channels,
|
474 |
+
sampling_rate,
|
475 |
+
win_length,
|
476 |
+
hop_length,
|
477 |
+
n_fft=None,
|
478 |
+
mel_fmin=0,
|
479 |
+
mel_fmax=None,
|
480 |
+
clamp=1e-5,
|
481 |
+
):
|
482 |
+
super().__init__()
|
483 |
+
n_fft = win_length if n_fft is None else n_fft
|
484 |
+
self.hann_window = {}
|
485 |
+
mel_basis = mel(
|
486 |
+
sr=sampling_rate,
|
487 |
+
n_fft=n_fft,
|
488 |
+
n_mels=n_mel_channels,
|
489 |
+
fmin=mel_fmin,
|
490 |
+
fmax=mel_fmax,
|
491 |
+
htk=True,
|
492 |
+
)
|
493 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
494 |
+
self.register_buffer("mel_basis", mel_basis)
|
495 |
+
self.n_fft = win_length if n_fft is None else n_fft
|
496 |
+
self.hop_length = hop_length
|
497 |
+
self.win_length = win_length
|
498 |
+
self.sampling_rate = sampling_rate
|
499 |
+
self.n_mel_channels = n_mel_channels
|
500 |
+
self.clamp = clamp
|
501 |
+
self.is_half = is_half
|
502 |
+
|
503 |
+
def forward(self, audio, keyshift=0, speed=1, center=True):
|
504 |
+
factor = 2 ** (keyshift / 12)
|
505 |
+
n_fft_new = int(np.round(self.n_fft * factor))
|
506 |
+
win_length_new = int(np.round(self.win_length * factor))
|
507 |
+
hop_length_new = int(np.round(self.hop_length * speed))
|
508 |
+
keyshift_key = f"{str(keyshift)}_{str(audio.device)}"
|
509 |
+
if keyshift_key not in self.hann_window:
|
510 |
+
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
511 |
+
audio.device
|
512 |
+
)
|
513 |
+
if not hasattr(self, "stft"):
|
514 |
+
self.stft = STFT(
|
515 |
+
filter_length=n_fft_new,
|
516 |
+
hop_length=hop_length_new,
|
517 |
+
win_length=win_length_new,
|
518 |
+
window="hann",
|
519 |
+
).to(audio.device)
|
520 |
+
magnitude = self.stft.transform(audio) # phase
|
521 |
+
|
522 |
+
if keyshift != 0:
|
523 |
+
size = self.n_fft // 2 + 1
|
524 |
+
resize = magnitude.size(1)
|
525 |
+
if resize < size:
|
526 |
+
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
527 |
+
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
528 |
+
mel_output = torch.matmul(self.mel_basis, magnitude)
|
529 |
+
if self.is_half is True:
|
530 |
+
mel_output = mel_output.half()
|
531 |
+
|
532 |
+
return torch.log(torch.clamp(mel_output, min=self.clamp))
|
533 |
+
|
534 |
+
|
535 |
+
class RMVPE:
|
536 |
+
def __init__(
|
537 |
+
self,
|
538 |
+
model_path: str,
|
539 |
+
is_half: bool,
|
540 |
+
hop_length: int = 160,
|
541 |
+
mel_fmin: float = 30,
|
542 |
+
mel_fmax: float = 8000,
|
543 |
+
device: str | None = None,
|
544 |
+
):
|
545 |
+
self.is_half = is_half
|
546 |
+
if device is None:
|
547 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
548 |
+
self.device = device
|
549 |
+
self.mel_extractor = MelSpectrogram(
|
550 |
+
is_half, 128, 16000, 1024, hop_length, None, mel_fmin, mel_fmax
|
551 |
+
).to(device)
|
552 |
+
|
553 |
+
model = E2E(4, 1, (2, 2))
|
554 |
+
ckpt = torch.load(model_path, map_location="cpu")
|
555 |
+
model.load_state_dict(ckpt)
|
556 |
+
model.eval()
|
557 |
+
if is_half:
|
558 |
+
model = model.half()
|
559 |
+
self.model = model
|
560 |
+
self.model = self.model.to(device)
|
561 |
+
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
562 |
+
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
563 |
+
|
564 |
+
def mel2hidden(self, mel):
|
565 |
+
with torch.no_grad():
|
566 |
+
n_frames = mel.shape[-1]
|
567 |
+
mel = F.pad(
|
568 |
+
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
|
569 |
+
)
|
570 |
+
hidden = self.model(mel)
|
571 |
+
return hidden[:, :n_frames]
|
572 |
+
|
573 |
+
def decode(self, hidden, thred=0.03):
|
574 |
+
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
575 |
+
f0 = 10 * (2 ** (cents_pred / 1200))
|
576 |
+
f0[f0 == 10] = 0
|
577 |
+
return f0
|
578 |
+
|
579 |
+
def infer_from_audio(self, audio: np.ndarray, thred: float = 0.03):
|
580 |
+
mel = self.mel_extractor(
|
581 |
+
torch.from_numpy(audio).float().to(self.device).unsqueeze(0), center=True
|
582 |
+
)
|
583 |
+
|
584 |
+
hidden = self.mel2hidden(mel)
|
585 |
+
|
586 |
+
hidden = hidden.squeeze(0).cpu().numpy()
|
587 |
+
if self.is_half is True:
|
588 |
+
hidden = hidden.astype("float32")
|
589 |
+
|
590 |
+
return self.decode(hidden, thred=thred)
|
591 |
+
|
592 |
+
def to_local_average_cents(self, salience, thred=0.05):
|
593 |
+
center = np.argmax(salience, axis=1)
|
594 |
+
salience = np.pad(salience, ((0, 0), (4, 4)))
|
595 |
+
|
596 |
+
center += 4
|
597 |
+
todo_salience = []
|
598 |
+
todo_cents_mapping = []
|
599 |
+
starts = center - 4
|
600 |
+
ends = center + 5
|
601 |
+
for idx in range(salience.shape[0]):
|
602 |
+
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
603 |
+
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
604 |
+
|
605 |
+
todo_salience = np.array(todo_salience)
|
606 |
+
todo_cents_mapping = np.array(todo_cents_mapping)
|
607 |
+
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
608 |
+
weight_sum = np.sum(todo_salience, 1)
|
609 |
+
devided = product_sum / weight_sum
|
610 |
+
|
611 |
+
maxx = np.max(salience, axis=1)
|
612 |
+
devided[maxx <= thred] = 0
|
613 |
+
|
614 |
+
return devided
|