File size: 22,072 Bytes
96c388f
 
 
 
 
 
 
 
 
 
 
e809270
96c388f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009aba0
 
96c388f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009aba0
 
96c388f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009aba0
 
96c388f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
import requests
import yfinance as yf
from datetime import datetime, date
import os

st.set_page_config(layout="wide")

FMP_API_KEY = os.getenv("FMP_API_KEY")

# -------------------------------------------------------------------
# Initialize session state defaults
# -------------------------------------------------------------------
if "valid_ticker" not in st.session_state:
    st.session_state["valid_ticker"] = None
if "ticker" not in st.session_state:
    st.session_state["ticker"] = None
if "hist" not in st.session_state:
    st.session_state["hist"] = None
if "consensus" not in st.session_state:
    st.session_state["consensus"] = None
if "df_targets" not in st.session_state:
    st.session_state["df_targets"] = None
if "df_rss" not in st.session_state:
    st.session_state["df_rss"] = None

# -------------------------------------------------------------------
# Column reordering helper: move specified columns to the end
# -------------------------------------------------------------------
def move_columns_to_end(df, cols_to_move):
    existing = [col for col in cols_to_move if col in df.columns]
    fixed_order = [col for col in df.columns if col not in existing] + existing
    return df[fixed_order]

# -------------------------------------------------------------------
# Cache functions
# -------------------------------------------------------------------
@st.cache_data
def fetch_yfinance_data(symbol, period="5y"):
    try:
        ticker_obj = yf.Ticker(symbol)
        hist = ticker_obj.history(period=period)
        if hist.empty:
            raise ValueError("No historical data found.")
        return hist
    except:
        st.error("Unable to fetch historical price data.")
        return None

@st.cache_data
def fetch_fmp_consensus(symbol):
    try:
        url = f"https://financialmodelingprep.com/api/v4/price-target-consensus?symbol={symbol}&apikey={FMP_API_KEY}"
        response = requests.get(url)
        data = response.json()
        if data and len(data) > 0:
            return data[0]
        else:
            raise ValueError("No consensus data returned.")
    except:
        st.error("Unable to fetch consensus data.")
        return None

@st.cache_data
def fetch_price_target_data(symbol):
    try:
        url = f"https://financialmodelingprep.com/api/v4/price-target?symbol={symbol}&apikey={FMP_API_KEY}"
        response = requests.get(url)
        data = response.json()
        if data:
            df = pd.DataFrame(data)
            df['publishedDate'] = pd.to_datetime(df['publishedDate'])
            return df
        else:
            raise ValueError("No price target data returned.")
    except:
        st.error("Unable to fetch price target data.")
        return None

@st.cache_data
def fetch_price_target_rss_feed(num_pages=5):
    try:
        all_data = []
        for page in range(num_pages):
            url = f"https://financialmodelingprep.com/api/v4/price-target-rss-feed?page={page}&apikey={FMP_API_KEY}"
            response = requests.get(url)
            if response.status_code == 200:
                data = response.json()
                all_data.extend(data)
        if all_data:
            df = pd.DataFrame(all_data)
            df['publishedDate'] = pd.to_datetime(df['publishedDate'])
            return df
        else:
            raise ValueError("No live feed data returned.")
    except:
        st.error("Unable to fetch live feed data.")
        return None

def is_valid_ticker(tkr):
    try:
        _ = yf.Ticker(tkr).info
        return True
    except:
        return False

# -------------------------------------------------------------------
# Sidebar
# -------------------------------------------------------------------
st.sidebar.title("Analysis Parameters")

with st.sidebar.expander("Page Selection", expanded=True):
    page = st.radio(
        "Select a page",
        ["Price Targets by Ticker", "Price Target Live Feed"],
        help="Choose a view for detailed stock data or a live feed of recent targets."
    )

if page == "Price Targets by Ticker":
    with st.sidebar.expander("Analysis Inputs", expanded=True):
        ticker = st.text_input(
            "Ticker Symbol",
            value="AAPL",
            help="Enter a valid stock ticker symbol (e.g. AAPL)."
        )
    run_analysis = st.sidebar.button("Run Analysis")
else:
    run_analysis = st.sidebar.button("Run Analysis", help="Fetch the latest live feed data.")

# -------------------------------------------------------------------
# Logic to store data in session state if Run Analysis is clicked
# -------------------------------------------------------------------
if page == "Price Targets by Ticker":
    if run_analysis:
        if not is_valid_ticker(ticker):
            st.session_state["valid_ticker"] = False
        else:
            st.session_state["valid_ticker"] = True
            st.session_state["ticker"] = ticker
            st.session_state["hist"] = fetch_yfinance_data(ticker)
            st.session_state["consensus"] = fetch_fmp_consensus(ticker)
            st.session_state["df_targets"] = fetch_price_target_data(ticker)

elif page == "Price Target Live Feed":
    if run_analysis:
        st.session_state["df_rss"] = fetch_price_target_rss_feed(num_pages=5)

# -------------------------------------------------------------------
# Main Page Content
# -------------------------------------------------------------------
if page == "Price Targets by Ticker":
    st.title("Analyst Price Targets")

    if st.session_state["valid_ticker"] is None:
        st.markdown("Enter a stock symbol and click **Run Analysis** to load the data.")
    elif st.session_state["valid_ticker"] is False:
        st.error("Invalid symbol. Please try again.")
    else:
        ticker = st.session_state["ticker"]
        hist = st.session_state["hist"]
        consensus = st.session_state["consensus"]
        df_targets = st.session_state["df_targets"]

        # Fixed bubble size multiplier
        bubble_multiplier = 1.2

        # -----------------------------------------
        # 12 Month Analyst Forecast Consensus
        # -----------------------------------------
        if hist is not None and consensus is not None:
            st.markdown("### Analyst Forecast (12-Month)")
            st.write("This chart shows the stock's closing price history. "
                     "It also shows projected targets for the next year, "
                     "including high, low, median, and overall consensus.")

            def plot_price_data_with_targets(history_df, cons, symbol, forecast_months=12):
                last_date = history_df.index[-1]
                future_date = last_date + pd.DateOffset(months=forecast_months)
                last_close = history_df['Close'][-1]
                extended_future_date = future_date + pd.DateOffset(days=90)

                fig = go.Figure()
                fig.add_trace(go.Scatter(
                    x=history_df.index,
                    y=history_df['Close'],
                    mode='lines',
                    name='Close Price',
                    line=dict(color='royalblue', width=2),
                    hovertemplate='Date: %{x}<br>Price: %{y:.2f}<extra></extra>'
                ))
                fig.add_trace(go.Scatter(
                    x=[last_date],
                    y=[last_close],
                    mode='markers',
                    marker=dict(color='white', size=12, symbol='circle'),
                    name="Current Price",
                    hovertemplate='Date: %{x}<br>Price: %{y:.2f}<extra></extra>'
                ))
                annotations = [
                    dict(
                        x=last_date,
                        y=last_close,
                        text=f"{round(last_close)}",
                        font=dict(size=16, color='white'),
                        showarrow=False,
                        yshift=30
                    )
                ]

                targets = [
                    ("Target High", cons["targetHigh"], "green"),
                    ("Target Low", cons["targetLow"], "red"),
                    ("Target Consensus", cons["targetConsensus"], "orange"),
                    ("Target Median", cons["targetMedian"], "purple")
                ]
                for name, val, color in targets:
                    val_rounded = round(val)
                    fig.add_trace(go.Scatter(
                        x=[last_date, future_date],
                        y=[last_close, val_rounded],
                        mode='lines',
                        line=dict(dash='dash', color=color, width=2),
                        name=name,
                        hovertemplate=f"{name}: {val_rounded}<extra></extra>"
                    ))
                    annotations.append(
                        dict(
                            x=future_date,
                            y=val_rounded,
                            text=f"<b>{val_rounded}</b>",
                            showarrow=True,
                            arrowhead=2,
                            ax=20,
                            ay=0,
                            font=dict(color=color, size=20)
                        )
                    )

                fig.add_shape(
                    type="line",
                    x0=last_date,
                    x1=last_date,
                    y0=history_df['Close'].min(),
                    y1=history_df['Close'].max(),
                    line=dict(color="gray", dash="dot")
                )

                fig.update_layout(
                    template='plotly_dark',
                    paper_bgcolor='#0e1117',
                    plot_bgcolor='#0e1117',
                    font=dict(color='white'),
                    title=dict(text=f"{symbol} Price History & 12-Month Targets", font=dict(color='white')),
                    legend=dict(
                        x=0.01, y=0.99,
                        bordercolor="white",
                        borderwidth=1,
                        font=dict(color='white')
                    ),
                    xaxis=dict(
                        range=[history_df.index[0], extended_future_date],
                        showgrid=True,
                        gridcolor='gray',
                        title=dict(text="Date", font=dict(color='white')),
                        tickfont=dict(color='white')
                    ),
                    yaxis=dict(
                        showgrid=True,
                        gridcolor='gray',
                        title=dict(text="Price", font=dict(color='white')),
                        tickfont=dict(color='white')
                    ),
                    annotations=annotations,
                    margin=dict(l=40, r=40, t=60, b=40)
                )
                return fig

            fig_consensus = plot_price_data_with_targets(hist, consensus, ticker)
            st.plotly_chart(fig_consensus, use_container_width=True)

        # -----------------------------------------
        # Price Target Evolution (Bubble Chart)
        # -----------------------------------------
        st.markdown("### Analyst Price Target Changes Over Time")
        st.write("This chart shows how price targets have shifted. "
                 "Bubble sizes represent the percentage change from the posted price.")

        if df_targets is not None:
            def plot_price_target_evolution(df):
                df['publishedDate'] = pd.to_datetime(df['publishedDate'], errors='coerce').dt.tz_localize(None)
                df['targetChange'] = df['priceTarget'] - df['priceWhenPosted']
                df['direction'] = df['targetChange'].apply(
                    lambda x: "Raised" if x > 0 else ("Lowered" if x < 0 else "No Change")
                )
                df['percentChange'] = (df['targetChange'] / df['priceWhenPosted']) * 100

                color_map = {"Raised": "green", "Lowered": "red", "No Change": "gray"}
                colors = df['direction'].map(color_map)
                bubble_sizes = abs(df['percentChange']) * bubble_multiplier

                df['date'] = df['publishedDate'].dt.date
                daily_median = df.groupby('date')['priceTarget'].median()
                daily_median.index = pd.to_datetime(daily_median.index)

                fig = go.Figure()

                # Price When Posted line+markers
                fig.add_trace(go.Scatter(
                    x=df['publishedDate'],
                    y=df['priceWhenPosted'],
                    mode='lines+markers',
                    name='Price When Posted',
                    line=dict(color='royalblue', width=2, dash='dot'),
                    marker=dict(size=8),
                    hovertemplate='Date: %{x}<br>Price When Posted: %{y:.2f}<extra></extra>'
                ))

                # Bubble markers for Price Target
                fig.add_trace(go.Scatter(
                    x=df['publishedDate'],
                    y=df['priceTarget'],
                    mode='markers',
                    name='Price Target',
                    marker=dict(
                        size=bubble_sizes,
                        color=colors,
                        opacity=0.7,
                        line=dict(width=1, color='black')
                    ),
                    hovertemplate=(
                        "<b>%{customdata[0]}</b><br>"
                        "Published: %{x}<br>"
                        "Price Target: %{y:.2f}<br>"
                        "Price When Posted: %{customdata[1]:.2f}<br>"
                        "Target Change: %{customdata[2]:.2f}<br>"
                        "Percent Change: %{customdata[3]:.2f}%<br>"
                        "Bubble Scale: 2.0"
                        "<extra></extra>"
                    ),
                    customdata=df[['newsTitle', 'priceWhenPosted', 'targetChange', 'percentChange']].values
                ))

                # Median line
                if not daily_median.empty:
                    fig.add_trace(go.Scatter(
                        x=daily_median.index,
                        y=daily_median.values,
                        mode='lines',
                        name='Median Price Target',
                        line=dict(color='white', dash='dash', width=3, shape='hv'),
                        hovertemplate='Date: %{x}<br>Median Price Target: %{y:.2f}<extra></extra>'
                    ))

                # Annotation for latest price
                if not df.empty:
                    current_date = df['publishedDate'].max()
                    current_price = df.loc[df['publishedDate'] == current_date, 'priceWhenPosted'].iloc[-1]
                    fig.add_annotation(
                        x=current_date,
                        y=current_price,
                        text=f"<b>{round(current_price)}</b>",
                        showarrow=False,
                        font=dict(size=16, color='white'),
                        yshift=30
                    )

                fig.update_layout(
                    template='plotly_dark',
                    paper_bgcolor='#0e1117',
                    plot_bgcolor='#0e1117',
                    font=dict(color='white'),
                    title=dict(text=f"{ticker}: Posted Price, Price Targets & Daily Median", font=dict(color='white')),
                    legend=dict(
                        x=0.01, y=0.99,
                        bordercolor="white",
                        borderwidth=1,
                        font=dict(color='white')
                    ),
                    xaxis=dict(
                        showgrid=True,
                        gridcolor='gray',
                        title=dict(text="Published Date", font=dict(color='white')),
                        tickfont=dict(color='white')
                    ),
                    yaxis=dict(
                        showgrid=True,
                        gridcolor='gray',
                        title=dict(text="Price (USD)", font=dict(color='white')),
                        tickfont=dict(color='white')
                    ),
                    margin=dict(l=40, r=40, t=60, b=40)
                )
                return fig

            fig_evolution = plot_price_target_evolution(df_targets)
            st.plotly_chart(fig_evolution, use_container_width=True)

            st.markdown("### Detailed Historical Price Targets")
            st.write("This table lists recent price targets, news headlines, and links.")

            df_targets["MovementChart"] = df_targets.apply(
                lambda row: [row["priceWhenPosted"], row["priceTarget"]],
                axis=1
            )
            df_targets = move_columns_to_end(
                df_targets,
                ["newsTitle","newsURL","newsPublisher","newsBaseURL","url"]
            )

            with st.expander("Detailed Data", expanded=False):
                st.dataframe(
                    df_targets,
                    column_config={
                        "MovementChart": st.column_config.LineChartColumn(
                            "From Posted to Target",
                            help="Line from priceWhenPosted to priceTarget",
                        )
                    },
                    height=300
                )

elif page == "Price Target Live Feed":
    st.title("Live Analyst Targets")

    if st.session_state["df_rss"] is None:
        st.markdown("Click **Run Analysis** to fetch the latest feed.")
    else:
        df_rss = st.session_state["df_rss"]
        if not df_rss.empty:
            st.markdown("### Latest Analyst Announcements")
            st.write("This chart shows a daily view of median percentage changes in targets for various symbols.")

            def plot_rss_feed(df):
                df['date'] = df['publishedDate'].dt.date
                df['targetChange'] = df['priceTarget'] - df['priceWhenPosted']
                df['percentChange'] = (df['targetChange'] / df['priceWhenPosted']) * 100

                grouped = df.groupby(['date', 'symbol']).agg({
                    'percentChange': 'median',
                    'priceTarget': 'median',
                    'priceWhenPosted': 'median'
                }).reset_index()

                if grouped.empty:
                    return None

                grouped['date'] = pd.to_datetime(grouped['date'])
                fig = px.scatter(
                    grouped,
                    x='date',
                    y='symbol',
                    size=grouped['percentChange'].abs(),
                    color='percentChange',
                    color_continuous_scale='RdYlGn',
                    title='Daily Median Analyst % Change by Symbol',
                    labels={'date': 'Date', 'symbol': 'Ticker', 'percentChange': '% Change'}
                )

                unique_symbols = grouped['symbol'].nunique()
                fig.update_layout(
                    template='plotly_dark',
                    paper_bgcolor='#0e1117',
                    plot_bgcolor='#0e1117',
                    font=dict(color='white'),
                    title=dict(text='Daily Median Analyst % Change by Symbol', font=dict(color='white')),
                    xaxis=dict(
                        showgrid=True,
                        gridcolor='gray',
                        title=dict(text="Date", font=dict(color='white')),
                        tickfont=dict(color='white')
                    ),
                    yaxis=dict(
                        showgrid=True,
                        gridcolor='gray',
                        title=dict(text="Ticker", font=dict(color='white')),
                        tickfont=dict(color='white')
                    ),
                    height=(unique_symbols * 10),
                    margin=dict(l=40, r=40, t=60, b=40)
                )

                fig.update_traces(
                    customdata=grouped[['symbol', 'percentChange', 'priceTarget', 'priceWhenPosted']].values,
                    hovertemplate=(
                        "<b>%{customdata[0]}</b><br>"
                        "Date: %{x}<br>"
                        "Median % Change: %{customdata[1]:.2f}%<br>"
                        "Median Target: %{customdata[2]:.2f}<br>"
                        "Median Posted: %{customdata[3]:.2f}<extra></extra>"
                    )
                )
                return fig

            feed_fig = plot_rss_feed(df_rss)
            if feed_fig:
                st.plotly_chart(feed_fig, use_container_width=True)
            else:
                st.info("No grouped data to plot.")

            st.markdown("### Detailed Live Feed Data")
            st.write("This table lists recent announcements with their posted price and target.")

            df_rss["MovementChart"] = df_rss.apply(
                lambda row: [row["priceWhenPosted"], row["priceTarget"]],
                axis=1
            )
            df_rss = move_columns_to_end(
                df_rss,
                ["newsTitle","newsURL","newsPublisher","newsBaseURL","url"]
            )

            with st.expander("Detailed Data", expanded=False):
                st.dataframe(
                    df_rss,
                    column_config={
                        "MovementChart": st.column_config.LineChartColumn(
                            "From Posted to Target",
                            help="Line from priceWhenPosted to priceTarget",
                        )
                    },
                    height=300
                )
        else:
            st.info("No live feed data available.")
            
# Hide default Streamlit style
st.markdown(
    """
    <style>
    #MainMenu {visibility: hidden;}
    footer {visibility: hidden;}
    </style>
    """,
    unsafe_allow_html=True
)