Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
import plotly.express as px
|
5 |
+
from datetime import datetime, timedelta
|
6 |
+
import textwrap
|
7 |
+
import os
|
8 |
+
|
9 |
+
API_KEY = os.getenv("FMP_API_KEY")
|
10 |
+
|
11 |
+
# Set wide page layout
|
12 |
+
st.set_page_config(page_title="Analyst Recommendations", layout="wide")
|
13 |
+
|
14 |
+
# Sidebar: Global ticker and page navigation
|
15 |
+
st.sidebar.header("Inputs")
|
16 |
+
with st.sidebar.expander("Ticker and Page Settings", expanded=True):
|
17 |
+
ticker = st.text_input(
|
18 |
+
"Enter Ticker Symbol",
|
19 |
+
value="AAPL",
|
20 |
+
help="Input the stock ticker symbol (e.g., AAPL, MSFT)."
|
21 |
+
)
|
22 |
+
page = st.radio(
|
23 |
+
"Select Page",
|
24 |
+
["Historical Ratings", "Recommendations"],
|
25 |
+
help="Choose which analysis page to view."
|
26 |
+
)
|
27 |
+
|
28 |
+
# Reset stored results if ticker changes
|
29 |
+
if "ticker" not in st.session_state or st.session_state.ticker != ticker:
|
30 |
+
st.session_state.ticker = ticker
|
31 |
+
st.session_state.historical_data = None
|
32 |
+
st.session_state.analyst_data = None
|
33 |
+
st.session_state.run_pressed_hist = False
|
34 |
+
st.session_state.run_pressed_analyst = False
|
35 |
+
|
36 |
+
# Cached function for historical data
|
37 |
+
@st.cache_data(show_spinner=False)
|
38 |
+
def load_historical_data(ticker):
|
39 |
+
try:
|
40 |
+
API_KEY = API_KEY
|
41 |
+
url = f"https://financialmodelingprep.com/api/v3/historical-rating/{ticker}?apikey={API_KEY}"
|
42 |
+
response = requests.get(url)
|
43 |
+
if response.status_code != 200:
|
44 |
+
st.error("Error retrieving historical data.")
|
45 |
+
return None
|
46 |
+
data = response.json()
|
47 |
+
df = pd.DataFrame(data)
|
48 |
+
# Define required columns.
|
49 |
+
req_cols = [
|
50 |
+
'date', 'rating', 'ratingScore', 'ratingRecommendation', 'ratingDetailsDCFScore',
|
51 |
+
'ratingDetailsROEScore', 'ratingDetailsROERecommendation',
|
52 |
+
'ratingDetailsROAScore', 'ratingDetailsROARecommendation',
|
53 |
+
'ratingDetailsDEScore', 'ratingDetailsDERecommendation',
|
54 |
+
'ratingDetailsPEScore', 'ratingDetailsPERecommendation',
|
55 |
+
'ratingDetailsPBScore', 'ratingDetailsPBRecommendation'
|
56 |
+
]
|
57 |
+
# Use alternative column if available.
|
58 |
+
if 'ratingDetailsROCFRecommendation' in df.columns:
|
59 |
+
req_cols.insert(4, 'ratingDetailsROCFRecommendation')
|
60 |
+
else:
|
61 |
+
req_cols.insert(4, 'ratingDetailsDCFRecommendation')
|
62 |
+
df = df[req_cols]
|
63 |
+
df['date'] = pd.to_datetime(df['date'])
|
64 |
+
df = df.sort_values('date')
|
65 |
+
return df
|
66 |
+
except Exception:
|
67 |
+
st.error("An error occurred while loading historical data.")
|
68 |
+
return None
|
69 |
+
|
70 |
+
# Cached function for analyst recommendations data
|
71 |
+
@st.cache_data(show_spinner=False)
|
72 |
+
def load_analyst_data(ticker):
|
73 |
+
try:
|
74 |
+
API_KEY = API_KEY
|
75 |
+
url = f"https://financialmodelingprep.com/api/v3/analyst-stock-recommendations/{ticker}?apikey={API_KEY}"
|
76 |
+
response = requests.get(url)
|
77 |
+
if response.status_code != 200:
|
78 |
+
st.error("Error retrieving analyst data.")
|
79 |
+
return None
|
80 |
+
data = response.json()
|
81 |
+
if isinstance(data, dict):
|
82 |
+
data = [data]
|
83 |
+
df = pd.DataFrame(data)
|
84 |
+
df['date'] = pd.to_datetime(df['date'])
|
85 |
+
df = df.sort_values('date')
|
86 |
+
return df
|
87 |
+
except Exception:
|
88 |
+
st.error("An error occurred while loading analyst data.")
|
89 |
+
return None
|
90 |
+
|
91 |
+
# Main area explanation
|
92 |
+
#st.title("Analysts Recommendations")
|
93 |
+
#st.write("This app displays historical rating scores and analyst recommendations for the specified ticker.")
|
94 |
+
|
95 |
+
|
96 |
+
# PAGE: Historical Ratings
|
97 |
+
if page == "Historical Ratings":
|
98 |
+
st.header("Historical Ratings")
|
99 |
+
# Sidebar inputs for this page
|
100 |
+
st.write("Below are a series of bar charts that show historical trends in key financial metrics.")
|
101 |
+
with st.expander("Category Description", expanded=False):
|
102 |
+
description = textwrap.dedent("""
|
103 |
+
- **Overall Rating Score**: Reflects the general analyst rating, summarizing overall performance.
|
104 |
+
- **DCF Score**: Represents the discounted cash flow valuation, which estimates a stock's intrinsic value.
|
105 |
+
- **ROE Score**: Measures return on equity to assess how efficiently a company uses shareholder funds.
|
106 |
+
- **ROA Score**: Indicates return on assets to gauge the effectiveness of asset use in generating profits.
|
107 |
+
- **DE Score**: Shows the debt-to-equity ratio, highlighting the financial leverage of the company.
|
108 |
+
- **PE Score**: Provides the price-to-earnings ratio, indicating market valuation relative to earnings.
|
109 |
+
- **PB Score**: Measures the price-to-book ratio to assess if the stock is undervalued compared to its book value.
|
110 |
+
Each chart displays the numerical score with a text recommendation. Colors denote recommendations like "Strong Buy", "Buy", "Neutral", "Sell", and "Strong Sell".
|
111 |
+
""")
|
112 |
+
st.markdown(description)
|
113 |
+
default_date = datetime.today() - timedelta(days=365)
|
114 |
+
with st.sidebar.expander("Date Settings", expanded=True):
|
115 |
+
start_date = st.date_input(
|
116 |
+
"Start Date",
|
117 |
+
value=default_date,
|
118 |
+
help="Select a start date for filtering historical data."
|
119 |
+
)
|
120 |
+
# Place run button below the start date input
|
121 |
+
if st.sidebar.button("Run Analysis", key="hist_run_button"):
|
122 |
+
st.session_state.run_pressed_hist = True
|
123 |
+
|
124 |
+
if st.session_state.run_pressed_hist:
|
125 |
+
# Load data if not already loaded
|
126 |
+
if st.session_state.historical_data is None:
|
127 |
+
st.session_state.historical_data = load_historical_data(ticker)
|
128 |
+
df_hist = st.session_state.historical_data
|
129 |
+
if df_hist is not None:
|
130 |
+
# Filter data based on start date.
|
131 |
+
df_filtered = df_hist[df_hist['date'] >= pd.to_datetime(start_date)]
|
132 |
+
#st.subheader(f"Historical Ratings for {ticker}")
|
133 |
+
#st.write("Bar charts below show various score metrics over time.")
|
134 |
+
recommendation_colors = {
|
135 |
+
"Strong Buy": "green",
|
136 |
+
"Buy": "lightgreen",
|
137 |
+
"Neutral": "orange",
|
138 |
+
"Sell": "lightcoral",
|
139 |
+
"Strong Sell": "red"
|
140 |
+
}
|
141 |
+
categories = [
|
142 |
+
'ratingScore', 'ratingDetailsDCFScore', 'ratingDetailsROEScore',
|
143 |
+
'ratingDetailsROAScore', 'ratingDetailsDEScore', 'ratingDetailsPEScore',
|
144 |
+
'ratingDetailsPBScore'
|
145 |
+
]
|
146 |
+
titles = [
|
147 |
+
'Overall Rating Score', 'DCF Score', 'ROE Score',
|
148 |
+
'ROA Score', 'DE Score', 'PE Score', 'PB Score'
|
149 |
+
]
|
150 |
+
for category, title in zip(categories, titles):
|
151 |
+
recommendation_col = category.replace("Score", "Recommendation")
|
152 |
+
st.markdown(f"**{title} Chart**")
|
153 |
+
#st.write("This chart shows the score over time with its associated recommendation.")
|
154 |
+
try:
|
155 |
+
fig = px.bar(
|
156 |
+
df_filtered,
|
157 |
+
x='date',
|
158 |
+
y=category,
|
159 |
+
text=category,
|
160 |
+
labels={'date': 'Date', category: 'Score'},
|
161 |
+
title=title,
|
162 |
+
color=recommendation_col,
|
163 |
+
color_discrete_map=recommendation_colors,
|
164 |
+
custom_data=['rating', recommendation_col]
|
165 |
+
)
|
166 |
+
fig.update_traces(
|
167 |
+
texttemplate="%{text}<br>%{customdata[0]} (%{customdata[1]})",
|
168 |
+
textposition='outside',
|
169 |
+
hovertemplate="<b>Date</b>: %{x}<br><b>Score</b>: %{y}<br><b>Rating</b>: %{customdata[0]}<br><b>Recommendation</b>: %{customdata[1]}<extra></extra>"
|
170 |
+
)
|
171 |
+
st.plotly_chart(fig, use_container_width=True)
|
172 |
+
except Exception:
|
173 |
+
st.error("Error displaying the chart. Please check the data and inputs.")
|
174 |
+
with st.expander("Show Detailed Historical Data"):
|
175 |
+
st.dataframe(df_filtered)
|
176 |
+
else:
|
177 |
+
st.info("Press 'Run Analysis' in the sidebar to load historical ratings data.")
|
178 |
+
|
179 |
+
# PAGE: Analyst Recommendations
|
180 |
+
elif page == "Recommendations":
|
181 |
+
st.header("Analyst Recommendations")
|
182 |
+
st.write("This section presents the monthly analyst recommendations for the selected ticker. The stacked bar chart aggregates various recommendation types over time.")
|
183 |
+
with st.expander("Category Description", expanded=False):
|
184 |
+
description = textwrap.dedent("""
|
185 |
+
- **Strong Buy**: Indicates that analysts are very confident the stock will perform strongly.
|
186 |
+
- **Buy**: Reflects a positive outlook from analysts regarding future performance.
|
187 |
+
- **Hold**: Suggests that analysts expect the stock to maintain its current performance.
|
188 |
+
- **Sell**: Signals a negative outlook, indicating the stock may underperform.
|
189 |
+
- **Strong Sell**: Represents a very bearish sentiment, with analysts expecting significant underperformance.
|
190 |
+
The chart lets you observe shifts in market sentiment over time and compare the prevalence of each recommendation type.
|
191 |
+
""")
|
192 |
+
st.markdown(description)
|
193 |
+
# No additional page-specific inputs; thus, no expander is shown.
|
194 |
+
if st.sidebar.button("Run Analysis", key="analyst_run_button"):
|
195 |
+
st.session_state.run_pressed_analyst = True
|
196 |
+
|
197 |
+
if st.session_state.run_pressed_analyst:
|
198 |
+
if st.session_state.analyst_data is None:
|
199 |
+
st.session_state.analyst_data = load_analyst_data(ticker)
|
200 |
+
df_analyst = st.session_state.analyst_data
|
201 |
+
if df_analyst is not None:
|
202 |
+
st.subheader(f"Analyst Recommendations for {ticker}")
|
203 |
+
st.write("The stacked bar chart below shows monthly analyst recommendations.")
|
204 |
+
rating_cols = [
|
205 |
+
"analystRatingsStrongBuy",
|
206 |
+
"analystRatingsbuy",
|
207 |
+
"analystRatingsHold",
|
208 |
+
"analystRatingsSell",
|
209 |
+
"analystRatingsStrongSell"
|
210 |
+
]
|
211 |
+
df_melted = pd.melt(
|
212 |
+
df_analyst,
|
213 |
+
id_vars=["date"],
|
214 |
+
value_vars=rating_cols,
|
215 |
+
var_name="RatingType",
|
216 |
+
value_name="Count"
|
217 |
+
)
|
218 |
+
color_map = {
|
219 |
+
"analystRatingsStrongBuy": "green",
|
220 |
+
"analystRatingsbuy": "lightgreen",
|
221 |
+
"analystRatingsHold": "orange",
|
222 |
+
"analystRatingsSell": "lightcoral",
|
223 |
+
"analystRatingsStrongSell": "red"
|
224 |
+
}
|
225 |
+
rating_order = [
|
226 |
+
"analystRatingsStrongBuy",
|
227 |
+
"analystRatingsbuy",
|
228 |
+
"analystRatingsHold",
|
229 |
+
"analystRatingsSell",
|
230 |
+
"analystRatingsStrongSell"
|
231 |
+
]
|
232 |
+
try:
|
233 |
+
fig2 = px.bar(
|
234 |
+
df_melted,
|
235 |
+
x="date",
|
236 |
+
y="Count",
|
237 |
+
color="RatingType",
|
238 |
+
text="Count",
|
239 |
+
title=f"Monthly Analyst Recommendations for {ticker.upper()}",
|
240 |
+
color_discrete_map=color_map,
|
241 |
+
category_orders={"RatingType": rating_order},
|
242 |
+
custom_data=["RatingType"],
|
243 |
+
labels={"date": "Date", "Count": "Number of Recommendations", "RatingType": "Recommendation Type"}
|
244 |
+
)
|
245 |
+
fig2.update_layout(barmode="stack")
|
246 |
+
fig2.update_traces(
|
247 |
+
texttemplate="%{text}",
|
248 |
+
textposition="inside",
|
249 |
+
hovertemplate="<b>Date</b>: %{x}<br><b>Count</b>: %{y}<br><b>Rating Type</b>: %{customdata[0]}<extra></extra>"
|
250 |
+
)
|
251 |
+
st.plotly_chart(fig2, use_container_width=True)
|
252 |
+
except Exception:
|
253 |
+
st.error("Error displaying the chart. Please check the data and inputs.")
|
254 |
+
with st.expander("Show Detailed Analyst Data"):
|
255 |
+
st.dataframe(df_analyst)
|
256 |
+
else:
|
257 |
+
st.info("Press 'Run Analysis' in the sidebar to load analyst recommendations data.")
|