Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
from plotly.subplots import make_subplots
|
6 |
+
import requests
|
7 |
+
import os
|
8 |
+
|
9 |
+
# -------------------------------------------------------
|
10 |
+
# GLOBAL CONFIG
|
11 |
+
# -------------------------------------------------------
|
12 |
+
API_KEY = os.getenv("FMP_API_KEY")
|
13 |
+
st.set_page_config(page_title="Financial Statements", layout="wide")
|
14 |
+
|
15 |
+
# Initialize session state for caching
|
16 |
+
if 'data_cache' not in st.session_state:
|
17 |
+
st.session_state.data_cache = {}
|
18 |
+
|
19 |
+
# -------------------------------------------------------
|
20 |
+
# CACHED FETCH FUNCTIONS
|
21 |
+
# -------------------------------------------------------
|
22 |
+
@st.cache_data
|
23 |
+
def fetch_income_statement(symbol: str, period: str, api_key: str) -> pd.DataFrame:
|
24 |
+
url = f"https://financialmodelingprep.com/api/v3/income-statement/{symbol}?period={period}&apikey={api_key}"
|
25 |
+
r = requests.get(url)
|
26 |
+
r.raise_for_status()
|
27 |
+
data = r.json() if r.status_code == 200 else []
|
28 |
+
df = pd.DataFrame(data)
|
29 |
+
if not df.empty and "date" in df.columns:
|
30 |
+
df["date"] = pd.to_datetime(df["date"], errors="coerce")
|
31 |
+
df.sort_values("date", inplace=True)
|
32 |
+
return df
|
33 |
+
|
34 |
+
@st.cache_data
|
35 |
+
def fetch_balance_sheet(symbol: str, period: str, api_key: str) -> pd.DataFrame:
|
36 |
+
url = f"https://financialmodelingprep.com/api/v3/balance-sheet-statement/{symbol}?period={period}&apikey={api_key}"
|
37 |
+
r = requests.get(url)
|
38 |
+
r.raise_for_status()
|
39 |
+
data = r.json() if r.status_code == 200 else []
|
40 |
+
df = pd.DataFrame(data)
|
41 |
+
if not df.empty and "date" in df.columns:
|
42 |
+
df["date"] = pd.to_datetime(df["date"], errors="coerce")
|
43 |
+
df.sort_values("date", inplace=True)
|
44 |
+
return df
|
45 |
+
|
46 |
+
@st.cache_data
|
47 |
+
def fetch_cash_flow(symbol: str, period: str, api_key: str) -> pd.DataFrame:
|
48 |
+
url = f"https://financialmodelingprep.com/api/v3/cash-flow-statement/{symbol}?period={period}&apikey={api_key}"
|
49 |
+
r = requests.get(url)
|
50 |
+
r.raise_for_status()
|
51 |
+
data = r.json() if r.status_code == 200 else []
|
52 |
+
df = pd.DataFrame(data)
|
53 |
+
if not df.empty and "date" in df.columns:
|
54 |
+
df["date"] = pd.to_datetime(df["date"], errors="coerce")
|
55 |
+
df.sort_values("date", inplace=True)
|
56 |
+
return df
|
57 |
+
|
58 |
+
# -------------------------------------------------------
|
59 |
+
# HELPER: CREATE DUAL-AXIS SUBPLOT
|
60 |
+
# -------------------------------------------------------
|
61 |
+
def create_dual_axis_figure(df: pd.DataFrame, vars_list: list[str], title: str, period: str) -> go.Figure:
|
62 |
+
shift_val = 1 if period == "annual" else 4
|
63 |
+
df_local = df.copy()
|
64 |
+
|
65 |
+
for var in vars_list:
|
66 |
+
if var in df_local.columns:
|
67 |
+
df_local[var + "_yoy"] = (
|
68 |
+
(df_local[var] - df_local[var].shift(shift_val))
|
69 |
+
/ df_local[var].shift(shift_val)
|
70 |
+
) * 100
|
71 |
+
else:
|
72 |
+
df_local[var + "_yoy"] = None
|
73 |
+
|
74 |
+
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
75 |
+
colors = px.colors.qualitative.Plotly
|
76 |
+
|
77 |
+
for idx, var in enumerate(vars_list):
|
78 |
+
color_idx = idx % len(colors)
|
79 |
+
base_color = colors[color_idx]
|
80 |
+
fig.add_trace(
|
81 |
+
go.Scatter(
|
82 |
+
x=df_local["date"],
|
83 |
+
y=df_local[var],
|
84 |
+
name=var,
|
85 |
+
mode="lines+markers",
|
86 |
+
line=dict(width=2, color=base_color),
|
87 |
+
hovertemplate=(f"<b>{var}</b><br>Date: %{{x}}<br>Value: %{{y:.2f}}<extra></extra>"),
|
88 |
+
),
|
89 |
+
secondary_y=False
|
90 |
+
)
|
91 |
+
yoy_col = var + "_yoy"
|
92 |
+
fig.add_trace(
|
93 |
+
go.Scatter(
|
94 |
+
x=df_local["date"],
|
95 |
+
y=df_local[yoy_col],
|
96 |
+
name=f"{var} YoY (%)",
|
97 |
+
mode="lines+markers",
|
98 |
+
line=dict(width=2, dash="dash", color=base_color),
|
99 |
+
opacity=0.3,
|
100 |
+
hovertemplate=(f"<b>{var} YoY</b><br>Date: %{{x}}<br>Change: %{{y:.2f}}%<extra></extra>"),
|
101 |
+
),
|
102 |
+
secondary_y=True
|
103 |
+
)
|
104 |
+
|
105 |
+
fig.update_layout(
|
106 |
+
title=title,
|
107 |
+
hovermode="closest",
|
108 |
+
legend=dict(x=0, y=-0.2, orientation="h", tracegroupgap=0),
|
109 |
+
)
|
110 |
+
fig.update_xaxes(title_text="Date")
|
111 |
+
fig.update_yaxes(title_text="Absolute Value", secondary_y=False)
|
112 |
+
fig.update_yaxes(title_text="YoY Change (%)", secondary_y=True)
|
113 |
+
return fig
|
114 |
+
|
115 |
+
# -------------------------------------------------------
|
116 |
+
# HELPER: ENHANCED INTERPRETATION TEXT
|
117 |
+
# -------------------------------------------------------
|
118 |
+
def interpret_financials(df: pd.DataFrame, metric_list: list[str], section_title: str, period: str) -> str:
|
119 |
+
existing_cols = [m for m in metric_list if m in df.columns]
|
120 |
+
if not existing_cols or df.empty:
|
121 |
+
return f"**{section_title}**: Data is not available for analysis."
|
122 |
+
|
123 |
+
df_valid = df[['date'] + existing_cols].dropna(subset=existing_cols, how='all')
|
124 |
+
if df_valid.empty:
|
125 |
+
return f"**{section_title}**: No valid data entries available."
|
126 |
+
|
127 |
+
df_valid = df_valid.sort_values("date")
|
128 |
+
latest_row = df_valid.iloc[-1]
|
129 |
+
latest_date = latest_row['date']
|
130 |
+
shift = 1 if period == "annual" else 4
|
131 |
+
period_type = "Year-over-Year" if period == "annual" else "Quarter-over-Quarter"
|
132 |
+
|
133 |
+
prior_row = df_valid.iloc[-1 - shift] if len(df_valid) > shift else None
|
134 |
+
prior_date = prior_row['date'] if prior_row is not None else None
|
135 |
+
|
136 |
+
values_only = df_valid[existing_cols].astype(float)
|
137 |
+
mean_vals = values_only.mean()
|
138 |
+
min_vals = values_only.min()
|
139 |
+
max_vals = values_only.max()
|
140 |
+
std_vals = values_only.std()
|
141 |
+
|
142 |
+
text = f"### {section_title}\n\n"
|
143 |
+
text += f"**Latest Data ({latest_date.date()}):** \n"
|
144 |
+
for col in existing_cols:
|
145 |
+
latest_val = latest_row[col]
|
146 |
+
text += f"- **{col.replace('_', ' ').title()}**: {latest_val:,.2f} \n" if pd.notna(latest_val) else f"- **{col.replace('_', ' ').title()}**: Data unavailable \n"
|
147 |
+
|
148 |
+
if prior_row is not None:
|
149 |
+
text += f"\n**{period_type} Change (vs. {prior_date.date()}):** \n"
|
150 |
+
for col in existing_cols:
|
151 |
+
latest_val = latest_row[col]
|
152 |
+
prior_val = prior_row[col]
|
153 |
+
if pd.notna(latest_val) and pd.notna(prior_val) and prior_val != 0:
|
154 |
+
pct_change = ((latest_val - prior_val) / abs(prior_val)) * 100
|
155 |
+
diff = latest_val - prior_val
|
156 |
+
direction = "increased" if diff > 0 else "decreased" if diff < 0 else "unchanged"
|
157 |
+
text += f"- **{col.replace('_', ' ').title()}**: {direction.capitalize()} by {abs(diff):,.2f} ({pct_change:+.1f}%) \n"
|
158 |
+
else:
|
159 |
+
text += f"- **{col.replace('_', ' ').title()}**: Insufficient data for comparison \n"
|
160 |
+
|
161 |
+
text += "\n**Historical Trends:** \n"
|
162 |
+
for col in existing_cols:
|
163 |
+
text += (f"- **{col.replace('_', ' ').title()}**: Mean = {mean_vals[col]:,.2f}, "
|
164 |
+
f"Min = {min_vals[col]:,.2f}, Max = {max_vals[col]:,.2f}, "
|
165 |
+
f"Std Dev = {std_vals[col]:,.2f} \n")
|
166 |
+
|
167 |
+
text += "\n**Investor Insights:** \n"
|
168 |
+
if section_title == "Revenue & Gross Profit":
|
169 |
+
text += (
|
170 |
+
"- Strong revenue growth paired with expanding gross profit margins signals operational efficiency and market strength. \n"
|
171 |
+
"- Declining trends may reflect competitive pressures or rising costs, impacting profitability. \n"
|
172 |
+
"- Volatility in these metrics could indicate cyclical demand or pricing instability. \n"
|
173 |
+
)
|
174 |
+
elif section_title == "Operating Expenses":
|
175 |
+
text += (
|
176 |
+
"- Rising expenses with stable revenue may erode margins, suggesting inefficiencies or investment in growth. \n"
|
177 |
+
"- Controlled or declining expenses reflect disciplined cost management. \n"
|
178 |
+
"- High variability could point to inconsistent operational strategies. \n"
|
179 |
+
)
|
180 |
+
elif section_title == "Net Income & Operating Income":
|
181 |
+
text += (
|
182 |
+
"- Consistent growth in operating and net income underscores sustainable earnings power. \n"
|
183 |
+
"- Divergence between operating income and net income may highlight tax or interest burdens. \n"
|
184 |
+
"- Sharp declines warrant investigation into cost structures or extraordinary items. \n"
|
185 |
+
)
|
186 |
+
elif section_title == "Earnings Per Share":
|
187 |
+
text += (
|
188 |
+
"- Rising EPS reflects enhanced shareholder value. \n"
|
189 |
+
"- Stagnant or falling EPS may signal dilution or profitability challenges. \n"
|
190 |
+
"- Compare diluted vs. basic EPS to assess the impact of potential equity issuance. \n"
|
191 |
+
)
|
192 |
+
elif section_title == "Assets":
|
193 |
+
text += (
|
194 |
+
"- Growth in total assets, especially liquid ones, indicates balance sheet strength and investment capacity. \n"
|
195 |
+
"- Declines may suggest asset sales or write-downs, potentially weakening financial flexibility. \n"
|
196 |
+
"- A balanced asset mix is key to supporting long-term growth. \n"
|
197 |
+
)
|
198 |
+
elif section_title == "Liabilities":
|
199 |
+
text += (
|
200 |
+
"- Increasing liabilities with stable assets raise leverage concerns. \n"
|
201 |
+
"- Controlled liability growth supports a stable capital structure. \n"
|
202 |
+
"- High short-term liabilities relative to cash may pressure liquidity. \n"
|
203 |
+
)
|
204 |
+
elif section_title == "Stockholders' Equity":
|
205 |
+
text += (
|
206 |
+
"- Rising equity reflects retained earnings growth or capital infusions. \n"
|
207 |
+
"- Declines may indicate losses or share repurchasing, affecting leverage ratios. \n"
|
208 |
+
"- Consistent equity growth enhances investor confidence. \n"
|
209 |
+
)
|
210 |
+
elif section_title == "Operating Activities":
|
211 |
+
text += (
|
212 |
+
"- Strong cash flow from operations indicates robust core business health. \n"
|
213 |
+
"- Negative or declining trends may reflect working capital issues. \n"
|
214 |
+
"- High depreciation relative to net income suggests significant non-cash adjustments. \n"
|
215 |
+
)
|
216 |
+
elif section_title == "Investing Activities":
|
217 |
+
text += (
|
218 |
+
"- Heavy investment in property or equipment signals long-term growth focus but may strain near-term cash. \n"
|
219 |
+
"- Positive cash from sales/maturities indicates strategic divestitures. \n"
|
220 |
+
"- Persistent negative flows suggest aggressive expansion. \n"
|
221 |
+
)
|
222 |
+
elif section_title == "Financing Activities":
|
223 |
+
text += (
|
224 |
+
"- Debt repayment or dividend increases reflect confidence in cash flows. \n"
|
225 |
+
"- Significant stock repurchasing may signal undervaluation or reduced growth. \n"
|
226 |
+
"- High financing inflows could indicate reliance on external capital. \n"
|
227 |
+
)
|
228 |
+
text += "\n*Recommendation*: Cross-reference these insights with industry benchmarks and broader market conditions."
|
229 |
+
|
230 |
+
return text
|
231 |
+
|
232 |
+
# -------------------------------------------------------
|
233 |
+
# PAGES
|
234 |
+
# -------------------------------------------------------
|
235 |
+
def page_income_statement(symbol: str, period: str):
|
236 |
+
key = f"income_{symbol}_{period}"
|
237 |
+
if key not in st.session_state.data_cache:
|
238 |
+
st.session_state.data_cache[key] = fetch_income_statement(symbol, period, API_KEY)
|
239 |
+
df = st.session_state.data_cache[key]
|
240 |
+
|
241 |
+
if df.empty:
|
242 |
+
st.error("No income statement data returned. Check symbol or period.")
|
243 |
+
return
|
244 |
+
|
245 |
+
st.success("Income Statement data loaded successfully.")
|
246 |
+
st.write("Charts display absolute values and period-over-period changes.")
|
247 |
+
|
248 |
+
st.subheader("1. Revenue & Gross Profit")
|
249 |
+
rev_vars = ["revenue", "grossProfit"]
|
250 |
+
fig_rev = create_dual_axis_figure(df, rev_vars, "Revenue & Gross Profit", period)
|
251 |
+
st.plotly_chart(fig_rev, use_container_width=True)
|
252 |
+
with st.expander("Interpretation"):
|
253 |
+
st.markdown(interpret_financials(df, rev_vars, "Revenue & Gross Profit", period))
|
254 |
+
|
255 |
+
st.subheader("2. Operating Expenses")
|
256 |
+
op_vars = ["researchAndDevelopmentExpenses", "sellingGeneralAndAdministrativeExpenses", "operatingExpenses"]
|
257 |
+
fig_op = create_dual_axis_figure(df, op_vars, "Operating Expenses", period)
|
258 |
+
st.plotly_chart(fig_op, use_container_width=True)
|
259 |
+
with st.expander("Interpretation"):
|
260 |
+
st.markdown(interpret_financials(df, op_vars, "Operating Expenses", period))
|
261 |
+
|
262 |
+
st.subheader("3. Net Income & Operating Income")
|
263 |
+
net_vars = ["netIncome", "operatingIncome", "incomeBeforeTax"]
|
264 |
+
fig_net = create_dual_axis_figure(df, net_vars, "Net Income & Operating Income", period)
|
265 |
+
st.plotly_chart(fig_net, use_container_width=True)
|
266 |
+
with st.expander("Interpretation"):
|
267 |
+
st.markdown(interpret_financials(df, net_vars, "Net Income & Operating Income", period))
|
268 |
+
|
269 |
+
st.subheader("4. Earnings Per Share")
|
270 |
+
eps_vars = ["eps", "epsdiluted"]
|
271 |
+
fig_eps = create_dual_axis_figure(df, eps_vars, "Earnings Per Share", period)
|
272 |
+
st.plotly_chart(fig_eps, use_container_width=True)
|
273 |
+
with st.expander("Interpretation"):
|
274 |
+
st.markdown(interpret_financials(df, eps_vars, "Earnings Per Share", period))
|
275 |
+
|
276 |
+
st.subheader("Complete Income Statement Data")
|
277 |
+
with st.expander("Show Complete Data"):
|
278 |
+
st.dataframe(df)
|
279 |
+
|
280 |
+
def page_balance_sheet(symbol: str, period: str):
|
281 |
+
key = f"balance_{symbol}_{period}"
|
282 |
+
if key not in st.session_state.data_cache:
|
283 |
+
st.session_state.data_cache[key] = fetch_balance_sheet(symbol, period, API_KEY)
|
284 |
+
df = st.session_state.data_cache[key]
|
285 |
+
|
286 |
+
if df.empty:
|
287 |
+
st.error("No balance sheet data returned. Check symbol or period.")
|
288 |
+
return
|
289 |
+
|
290 |
+
st.success("Balance Sheet data loaded successfully.")
|
291 |
+
st.write("Charts display absolute values and period-over-period changes.")
|
292 |
+
|
293 |
+
st.subheader("1. Assets")
|
294 |
+
asset_vars = ["cashAndShortTermInvestments", "totalCurrentAssets", "totalNonCurrentAssets", "totalAssets"]
|
295 |
+
fig_a = create_dual_axis_figure(df, asset_vars, "Assets", period)
|
296 |
+
st.plotly_chart(fig_a, use_container_width=True)
|
297 |
+
with st.expander("Interpretation"):
|
298 |
+
st.markdown(interpret_financials(df, asset_vars, "Assets", period))
|
299 |
+
|
300 |
+
st.subheader("2. Liabilities")
|
301 |
+
liability_vars = ["totalCurrentLiabilities", "totalNonCurrentLiabilities", "totalLiabilities"]
|
302 |
+
fig_l = create_dual_axis_figure(df, liability_vars, "Liabilities", period)
|
303 |
+
st.plotly_chart(fig_l, use_container_width=True)
|
304 |
+
with st.expander("Interpretation"):
|
305 |
+
st.markdown(interpret_financials(df, liability_vars, "Liabilities", period))
|
306 |
+
|
307 |
+
st.subheader("3. Stockholders' Equity")
|
308 |
+
equity_vars = ["commonStock", "retainedEarnings", "accumulatedOtherComprehensiveIncomeLoss", "totalStockholdersEquity"]
|
309 |
+
fig_e = create_dual_axis_figure(df, equity_vars, "Stockholders' Equity", period)
|
310 |
+
st.plotly_chart(fig_e, use_container_width=True)
|
311 |
+
with st.expander("Interpretation"):
|
312 |
+
st.markdown(interpret_financials(df, equity_vars, "Stockholders' Equity", period))
|
313 |
+
|
314 |
+
st.subheader("Complete Balance Sheet Data")
|
315 |
+
with st.expander("Show Complete Data"):
|
316 |
+
st.dataframe(df)
|
317 |
+
|
318 |
+
def page_cash_flow(symbol: str, period: str):
|
319 |
+
key = f"cash_{symbol}_{period}"
|
320 |
+
if key not in st.session_state.data_cache:
|
321 |
+
st.session_state.data_cache[key] = fetch_cash_flow(symbol, period, API_KEY)
|
322 |
+
df = st.session_state.data_cache[key]
|
323 |
+
|
324 |
+
if df.empty:
|
325 |
+
st.error("No cash flow data returned. Check symbol or period.")
|
326 |
+
return
|
327 |
+
|
328 |
+
st.success("Cash Flow data loaded successfully.")
|
329 |
+
st.write("Charts display absolute values and period-over-period changes.")
|
330 |
+
|
331 |
+
st.subheader("1. Operating Activities")
|
332 |
+
op_vars = ["netIncome", "depreciationAndAmortization", "changeInWorkingCapital", "netCashProvidedByOperatingActivities"]
|
333 |
+
fig_op = create_dual_axis_figure(df, op_vars, "Operating Activities", period)
|
334 |
+
st.plotly_chart(fig_op, use_container_width=True)
|
335 |
+
with st.expander("Interpretation"):
|
336 |
+
st.markdown(interpret_financials(df, op_vars, "Operating Activities", period))
|
337 |
+
|
338 |
+
st.subheader("2. Investing Activities")
|
339 |
+
inv_vars = ["investmentsInPropertyPlantAndEquipment", "purchasesOfInvestments", "salesMaturitiesOfInvestments", "netCashUsedForInvestingActivites"]
|
340 |
+
fig_inv = create_dual_axis_figure(df, inv_vars, "Investing Activities", period)
|
341 |
+
st.plotly_chart(fig_inv, use_container_width=True)
|
342 |
+
with st.expander("Interpretation"):
|
343 |
+
st.markdown(interpret_financials(df, inv_vars, "Investing Activities", period))
|
344 |
+
|
345 |
+
st.subheader("3. Financing Activities")
|
346 |
+
fin_vars = ["debtRepayment", "commonStockRepurchased", "dividendsPaid", "netCashUsedProvidedByFinancingActivities"]
|
347 |
+
fig_fin = create_dual_axis_figure(df, fin_vars, "Financing Activities", period)
|
348 |
+
st.plotly_chart(fig_fin, use_container_width=True)
|
349 |
+
with st.expander("Interpretation"):
|
350 |
+
st.markdown(interpret_financials(df, fin_vars, "Financing Activities", period))
|
351 |
+
|
352 |
+
st.subheader("Complete Cash Flow Data")
|
353 |
+
with st.expander("Show Complete Data"):
|
354 |
+
st.dataframe(df)
|
355 |
+
|
356 |
+
# -------------------------------------------------------
|
357 |
+
# MAIN
|
358 |
+
# -------------------------------------------------------
|
359 |
+
st.title("Financial Statements Analysis")
|
360 |
+
st.markdown("""
|
361 |
+
This tool presents key financial statements for your review.
|
362 |
+
It displays the Income Statement, Balance Sheet, and Cash Flow Statement.
|
363 |
+
Charts show absolute numbers on the left and changes over time on the right.
|
364 |
+
""")
|
365 |
+
|
366 |
+
|
367 |
+
# Sidebar: Navigation and Inputs
|
368 |
+
with st.sidebar.expander("Navigation", expanded=True):
|
369 |
+
selected_page = st.radio("Select Page", ["Income Statement", "Balance Sheet", "Cash Flow"], index=0)
|
370 |
+
st.session_state.page = selected_page
|
371 |
+
|
372 |
+
with st.sidebar.expander("Inputs", expanded=True):
|
373 |
+
symbol = st.text_input("Symbol or CIK", value="AAPL")
|
374 |
+
period = st.selectbox("Period", options=["annual", "quarter"])
|
375 |
+
run_button = st.button("Run Analysis")
|
376 |
+
|
377 |
+
# When run is pressed, update symbol/period and refresh only the active page.
|
378 |
+
if run_button:
|
379 |
+
st.session_state.symbol = symbol
|
380 |
+
st.session_state.period = period
|
381 |
+
current_page = st.session_state.page
|
382 |
+
if current_page == "Income Statement":
|
383 |
+
st.session_state.data_cache[f"income_{symbol}_{period}"] = fetch_income_statement(symbol, period, API_KEY)
|
384 |
+
elif current_page == "Balance Sheet":
|
385 |
+
st.session_state.data_cache[f"balance_{symbol}_{period}"] = fetch_balance_sheet(symbol, period, API_KEY)
|
386 |
+
elif current_page == "Cash Flow":
|
387 |
+
st.session_state.data_cache[f"cash_{symbol}_{period}"] = fetch_cash_flow(symbol, period, API_KEY)
|
388 |
+
|
389 |
+
# Retrieve the latest inputs from session state.
|
390 |
+
symbol = st.session_state.get('symbol', 'AAPL')
|
391 |
+
period = st.session_state.get('period', 'annual')
|
392 |
+
current_page = st.session_state.get('page', 'Income Statement')
|
393 |
+
|
394 |
+
if current_page == "Income Statement":
|
395 |
+
page_income_statement(symbol, period)
|
396 |
+
elif current_page == "Balance Sheet":
|
397 |
+
page_balance_sheet(symbol, period)
|
398 |
+
elif current_page == "Cash Flow":
|
399 |
+
page_cash_flow(symbol, period)
|
400 |
+
|
401 |
+
# Hide default Streamlit style
|
402 |
+
st.markdown(
|
403 |
+
"""
|
404 |
+
<style>
|
405 |
+
#MainMenu {visibility: hidden;}
|
406 |
+
footer {visibility: hidden;}
|
407 |
+
</style>
|
408 |
+
""",
|
409 |
+
unsafe_allow_html=True
|
410 |
+
)
|