import json import os import openai from langchain.prompts import PromptTemplate from config import TIMEOUT_STREAM from vector_db import upload_file from callback import StreamingGradioCallbackHandler from queue import SimpleQueue, Empty, Queue from threading import Thread from utils import history_file_path, load_lasted_file_username, add_source_numbers, add_details from chains.custom_chain import CustomConversationalRetrievalChain from langchain.chains import LLMChain from chains.azure_openai import CustomAzureOpenAI from config import OPENAI_API_TYPE, OPENAI_API_VERSION, OPENAI_API_KEY, OPENAI_API_BASE, API_KEY, \ DEPLOYMENT_ID, MODEL_ID, EMBEDDING_API_KEY, EMBEDDING_API_BASE class OpenAIModel: def __init__( self, llm_model_name, condense_model_name, prompt_template="", temperature=0.0, top_p=1.0, n_choices=1, stop = None, presence_penalty=0, frequency_penalty=0, user = None ): self.llm_model_name = llm_model_name self.condense_model_name = condense_model_name self.prompt_template = prompt_template self.temperature = temperature self.top_p = top_p self.n_choices = n_choices self.stop = stop self.presence_penalty = presence_penalty self.frequency_penalty = frequency_penalty self.history = [] self.user_identifier = user def set_user_indentifier(self, new_user_indentifier): self.user_identifier = new_user_indentifier def format_prompt(self, qa_prompt_template, condense_prompt_template): # Prompt template langchain qa_prompt = PromptTemplate(template=qa_prompt_template, input_variables=["question", "chat_history", "context"]) condense_prompt = PromptTemplate(template=condense_prompt_template, input_variables=["question", "chat_history"]) return qa_prompt, condense_prompt def memory(self, inputs, outputs, last_k=3): # last_k: top k last conversation if len(self.history) >= last_k: self.history.pop(0) self.history.extend([(inputs, outputs)]) def reset_conversation(self): self.history = [] return [] def delete_first_conversation(self): if self.history: self.history.pop(0) def delete_last_conversation(self): if len(self.history) > 0: self.history.pop() def auto_save_history(self, chatbot): if self.user_identifier is not None: file_path = history_file_path(self.user_identifier) json_s = {"history": self.history, "chatbot": chatbot} with open(file_path, "w", encoding='utf-8') as f: json.dump(json_s, f, ensure_ascii=False) def load_history(self): lasted_file = load_lasted_file_username(self.user_identifier) if lasted_file is not None: with open(f"{lasted_file}.json", "r", encoding="utf-8") as f: json_s = json.load(f) self.history = json_s["history"] chatbot = json_s["chatbot"] return chatbot def audio_response(self, audio): media_file = open(audio, 'rb') response = openai.Audio.transcribe( api_key=API_KEY, model=MODEL_ID, file=media_file ) return response["text"] def inference(self, inputs, chatbot, streaming=False, use_websearch=False, custom_websearch=False, **kwargs): if use_websearch or custom_websearch: import requests from bs4 import BeautifulSoup from langchain.utilities.google_search import GoogleSearchAPIWrapper from chains.web_search import GoogleWebSearch from config import GOOGLE_API_KEY, GOOGLE_CSE_ID, CUSTOM_API_KEY, CUSTOM_CSE_ID from chains.summary import WebSummary from chains.multi_queries import MultiQueries status_text = "Retrieving information from the web" yield chatbot, status_text if use_websearch: google_api_key = GOOGLE_API_KEY google_cse_id = GOOGLE_CSE_ID else: google_api_key = CUSTOM_API_KEY google_cse_id = CUSTOM_CSE_ID search = GoogleSearchAPIWrapper(google_api_key=google_api_key, google_cse_id=google_cse_id) queries_chain = MultiQueries() out = queries_chain.predict(question=inputs) queries = list(map(lambda x: x.split(': ')[-1], out.split('\n\n'))) print(queries) results = [] for query in queries: search_rs = search.results(query, 2) results.extend(search_rs) reference_results = [] display_append = [] for idx, result in enumerate(results[:3]): try: head = requests.head(result['link']) print(result["link"]) status_text = "Access " + result['link'] yield chatbot, status_text if "text/html" in head.headers['Content-Type']: html_response = requests.get(result['link']) soup = BeautifulSoup(html_response.content, "html.parser") try: web_summary = WebSummary() text = soup.get_text() lines = (line.strip() for line in text.splitlines()) # break multi-headlines into a line each chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) # drop blank lines text = '\n'.join(chunk for chunk in chunks if chunk) summary = web_summary.predict(question=inputs, doc=text) print("Can access", result['link']) # break into lines and remove leading and trailing space on each except: print("Cannot access ", result['link']) yield chatbot, status_text reference_results.append([summary, result['link']]) display_append.append( f"{idx+1}. {result['title']}" ) except: continue reference_results = add_source_numbers(reference_results) display_append = '