File size: 5,669 Bytes
d037cdf
 
a4b89be
 
d037cdf
 
 
 
 
 
a4b89be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d966901
 
 
 
 
 
a4b89be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d037cdf
 
 
 
 
 
a4b89be
 
 
 
 
d037cdf
a4b89be
 
 
d037cdf
 
a4b89be
 
 
 
 
 
 
 
 
 
d037cdf
 
 
 
 
 
 
 
 
 
 
 
a4b89be
 
d037cdf
a4b89be
 
d037cdf
a4b89be
 
 
 
d037cdf
 
 
 
a4b89be
 
d037cdf
 
a4b89be
d037cdf
 
 
a4b89be
 
 
 
 
d037cdf
 
 
 
 
 
a4b89be
 
d037cdf
 
 
 
 
 
 
 
 
 
 
 
 
a4b89be
d037cdf
a4b89be
d037cdf
a4b89be
 
d037cdf
a4b89be
d037cdf
a4b89be
d037cdf
a4b89be
d037cdf
a4b89be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import datetime
import os
import json
import gradio as gr

from prompts.llm import qa_prompt_template
from prompts.condense_llm import condense_template
from config import HISTORY_DIR


def web_citation(inputs, results, custom_websearch=False):
    import requests

    from bs4 import BeautifulSoup
    from chains.summary import WebSummary
    reference_results = []
    display_append = []
    for idx, result in enumerate(results):
        try:
            head = requests.head(result['link'])
            if "text/html" in head.headers['Content-Type']:
                html_response = requests.get(result['link'])
                soup = BeautifulSoup(html_response.content, "html.parser")
                if not custom_websearch:
                    title = result["title"]
                else:
                    title = soup.find_all('title')[0].get_text()
                try:
                    web_summary = WebSummary()
                    text = soup.get_text()
                    lines = (line.strip() for line in text.splitlines())
                    # break multi-headlines into a line each
                    chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
                    # drop blank lines
                    text = '\n'.join(chunk for chunk in chunks if chunk)

                    summary = web_summary.predict(question=inputs, doc=text)
                    print("Can access", result['link'])
                except:
                    summary = ""
                    print("Cannot access ", result['link']) 
                reference_results.append([summary, result['link']])
                display_append.append(
                    f'<a href=\"{result["link"]}\" target=\"_blank\">{idx + 1}.&nbsp;{title}</a>'
                )  
        except:
            continue
    return reference_results, display_append


def get_auth():
    if os.path.exists("auth.json"):
        auth_list = []
        with open("auth.json", "r", encoding='utf-8') as f:
            auth = json.load(f)
            # print(auth)
            for _ in auth:
                if auth[_]["username"] and auth[_]["password"]:
                    auth_list.append((auth[_]["username"], auth[_]["password"]))
    return auth_list


def transcribe(current_model, audio):
    return current_model.audio_response(audio)


def related_question(current_model):
    return current_model.related_question()


def history_file_path(username, file_name):
    now = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
    dirname = os.path.join(HISTORY_DIR, username, now)
    os.makedirs(dirname, exist_ok=True)
    history_path = os.path.join(dirname, f"{file_name}.json")
    return history_path

def get_history_names(plain=False, user_name=""):
    from cosmos_db import query_item
    items = query_item(user_name)
    files = [item["id"] for item in items]
    if plain:
        return files
    else:
        return gr.update(choices=files)
    

def load_lasted_file_username(username):
    if username not in os.listdir(HISTORY_DIR):
        return None
    date_time_list = []
    for filename in os.listdir(os.path.join(HISTORY_DIR, username)):
        date_time_list.append(datetime.datetime.strptime(filename[:19], '%Y-%m-%d_%H-%M-%S'))

    lasted_time = max(date_time_list)
    lasted_file = lasted_time.strftime('%Y-%m-%d_%H-%M-%S')
    return os.path.join(HISTORY_DIR, username, lasted_file)


def load_chat_history(current_model, file_name):
    return current_model.load_history(file_name)

def save_chat_history(current_model, chatbot, file_name):
    return current_model.save_history(chatbot, file_name)

def predict(chatbot, model, inputs, upload_files_btn, custom_websearch, local_db):
    iter = model.inference(inputs=inputs, chatbot=chatbot, streaming=True, upload_files_btn=upload_files_btn,
                           custom_websearch=custom_websearch, qa_prompt_template=qa_prompt_template,
                           local_db=local_db, condense_prompt_template=condense_template)
    for response in iter:
        yield response


def set_user_identifier(current_model, *args):
    return current_model.set_user_identifie(*args)


def retry(chatbot, model, upload_files_btn, custom_websearch, local_db):
    model.delete_last_conversation()
    if len(chatbot) > 0:
        inputs = chatbot[-1][0]
    iter = model.inference(inputs=inputs, chatbot=chatbot, streaming=True, upload_files_btn=upload_files_btn,
                           custom_websearch=custom_websearch, qa_prompt_template=qa_prompt_template,
                           local_db=local_db, condense_prompt_template=condense_template)
    for response in iter:
        yield response


def reset(current_model):
    return current_model.reset_conversation()


def delete_chat_history(current_model, file_name):
    return current_model.delete_history(file_name)


def delete_first_conversation(current_model):
    return current_model.delete_first_conversation()


def delete_last_conversation(current_model, chatbot):
    if len(chatbot) > 0:
        chatbot.pop()
    current_model.delete_last_conversation()
    return chatbot


def add_source_numbers(lst, source_name="Source", use_source=True):
    if use_source:
        return [f'[{idx + 1}]\t "{item[0]}"\n{source_name}: {item[1]}' for idx, item in enumerate(lst)]
    else:
        return [f'[{idx + 1}]\t "{item}"' for idx, item in enumerate(lst)]


def add_details(lst, lst_src):
    nodes = []
    for idx, (txt, src) in enumerate(zip(lst, lst_src)):
        nodes.append(
            f"<details><summary>{txt[:4]}{src}</summary><p>{txt[4:]}</p></details>"
        )
    return nodes