File size: 15,233 Bytes
a4b89be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
"""Wrapper around Pinecone vector database."""
from __future__ import annotations

import logging
import uuid
from typing import Any, Callable, Iterable, List, Optional, Tuple

import numpy as np

from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import DistanceStrategy, maximal_marginal_relevance

logger = logging.getLogger(__name__)


class Pinecone(VectorStore):
    """Wrapper around Pinecone vector database.

    To use, you should have the ``pinecone-client`` python package installed.

    Example:
        .. code-block:: python

            from langchain.vectorstores import Pinecone
            from langchain.embeddings.openai import OpenAIEmbeddings
            import pinecone

            # The environment should be the one specified next to the API key
            # in your Pinecone console
            pinecone.init(api_key="***", environment="...")
            index = pinecone.Index("langchain-demo")
            embeddings = OpenAIEmbeddings()
            vectorstore = Pinecone(index, embeddings.embed_query, "text")
    """

    def __init__(
        self,
        index: Any,
        embedding_function: Callable,
        text_key: str,
        namespace: Optional[str] = None,
        distance_strategy: Optional[DistanceStrategy] = DistanceStrategy.COSINE,
    ):
        """Initialize with Pinecone client."""
        try:
            import pinecone
        except ImportError:
            raise ValueError(
                "Could not import pinecone python package. "
                "Please install it with `pip install pinecone-client`."
            )
        if not isinstance(index, pinecone.index.Index):
            raise ValueError(
                f"client should be an instance of pinecone.index.Index, "
                f"got {type(index)}"
            )
        self._index = index
        self._embedding_function = embedding_function
        self._text_key = text_key
        self._namespace = namespace
        self.distance_strategy = distance_strategy

    @property
    def embeddings(self) -> Optional[Embeddings]:
        # TODO: Accept this object directly
        return None

    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        namespace: Optional[str] = None,
        batch_size: int = 32,
        **kwargs: Any,
    ) -> List[str]:
        """Run more texts through the embeddings and add to the vectorstore.

        Args:
            texts: Iterable of strings to add to the vectorstore.
            metadatas: Optional list of metadatas associated with the texts.
            ids: Optional list of ids to associate with the texts.
            namespace: Optional pinecone namespace to add the texts to.

        Returns:
            List of ids from adding the texts into the vectorstore.

        """
        if namespace is None:
            namespace = self._namespace
        # Embed and create the documents
        docs = []
        ids = ids or [str(uuid.uuid4()) for _ in texts]
        for i, text in enumerate(texts):
            embedding = self._embedding_function(text)
            metadata = metadatas[i] if metadatas else {}
            metadata[self._text_key] = text
            docs.append((ids[i], embedding, metadata))
        # upsert to Pinecone
        self._index.upsert(
            vectors=docs, namespace=namespace, batch_size=batch_size, **kwargs
        )
        return ids
    
    def similarity_search_with_relevance_scores(
        self,
        query: str,
        k: int = 4,
        **kwargs: Any,
    ) -> List[Tuple[Document, float]]:
        return [
            a
            for a in self.similarity_search_with_score(query, k=k)
            if a[1] > kwargs["score_threshold"]
        ]
    
    def similarity_search_with_score(
        self,
        query: str,
        k: int = 4,
        filter: Optional[dict] = None,
        namespace: Optional[str] = None,
    ) -> List[Tuple[Document, float]]:
        """Return pinecone documents most similar to query, along with scores.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter: Dictionary of argument(s) to filter on metadata
            namespace: Namespace to search in. Default will search in '' namespace.

        Returns:
            List of Documents most similar to the query and score for each
        """
        if namespace is None:
            namespace = self._namespace
        query_obj = self._embedding_function(query)
        docs = []
        results = self._index.query(
            [query_obj],
            top_k=k,
            include_metadata=True,
            namespace=namespace,
            filter=filter,
        )
        for res in results["matches"]:
            metadata = res["metadata"]
            if self._text_key in metadata:
                text = metadata.pop(self._text_key)
                score = res["score"]
                docs.append((Document(page_content=text, metadata=metadata), score))
            else:
                logger.warning(
                    f"Found document with no `{self._text_key}` key. Skipping."
                )
        return docs

    def similarity_search(
        self,
        query: str,
        k: int = 4,
        filter: Optional[dict] = None,
        namespace: Optional[str] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Return pinecone documents most similar to query.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter: Dictionary of argument(s) to filter on metadata
            namespace: Namespace to search in. Default will search in '' namespace.

        Returns:
            List of Documents most similar to the query and score for each
        """
        docs_and_scores = self.similarity_search_with_score(
            query, k=k, filter=filter, namespace=namespace, **kwargs
        )
        return [doc for doc, _ in docs_and_scores]

    def _select_relevance_score_fn(self) -> Callable[[float], float]:
        """
        The 'correct' relevance function
        may differ depending on a few things, including:
        - the distance / similarity metric used by the VectorStore
        - the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
        - embedding dimensionality
        - etc.
        """

        if self.distance_strategy == DistanceStrategy.COSINE:
            return self._cosine_relevance_score_fn
        elif self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
            return self._max_inner_product_relevance_score_fn
        elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE:
            return self._euclidean_relevance_score_fn
        else:
            raise ValueError(
                "Unknown distance strategy, must be cosine, max_inner_product "
                "(dot product), or euclidean"
            )

    def max_marginal_relevance_search_by_vector(
        self,
        embedding: List[float],
        k: int = 4,
        fetch_k: int = 20,
        lambda_mult: float = 0.5,
        filter: Optional[dict] = None,
        namespace: Optional[str] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Return docs selected using the maximal marginal relevance.

        Maximal marginal relevance optimizes for similarity to query AND diversity
        among selected documents.

        Args:
            embedding: Embedding to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
            lambda_mult: Number between 0 and 1 that determines the degree
                        of diversity among the results with 0 corresponding
                        to maximum diversity and 1 to minimum diversity.
                        Defaults to 0.5.
        Returns:
            List of Documents selected by maximal marginal relevance.
        """
        if namespace is None:
            namespace = self._namespace
        results = self._index.query(
            [embedding],
            top_k=fetch_k,
            include_values=True,
            include_metadata=True,
            namespace=namespace,
            filter=filter,
        )
        mmr_selected = maximal_marginal_relevance(
            np.array([embedding], dtype=np.float32),
            [item["values"] for item in results["matches"]],
            k=k,
            lambda_mult=lambda_mult,
        )
        selected = [results["matches"][i]["metadata"] for i in mmr_selected]
        return [
            Document(page_content=metadata.pop((self._text_key)), metadata=metadata)
            for metadata in selected
        ]

    def max_marginal_relevance_search(
        self,
        query: str,
        k: int = 4,
        fetch_k: int = 20,
        lambda_mult: float = 0.5,
        filter: Optional[dict] = None,
        namespace: Optional[str] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Return docs selected using the maximal marginal relevance.

        Maximal marginal relevance optimizes for similarity to query AND diversity
        among selected documents.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
            lambda_mult: Number between 0 and 1 that determines the degree
                        of diversity among the results with 0 corresponding
                        to maximum diversity and 1 to minimum diversity.
                        Defaults to 0.5.
        Returns:
            List of Documents selected by maximal marginal relevance.
        """
        embedding = self._embedding_function(query)
        return self.max_marginal_relevance_search_by_vector(
            embedding, k, fetch_k, lambda_mult, filter, namespace
        )

    @classmethod
    def from_texts(
        cls,
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        batch_size: int = 32,
        text_key: str = "text",
        index_name: Optional[str] = None,
        namespace: Optional[str] = None,
        upsert_kwargs: Optional[dict] = None,
        **kwargs: Any,
    ) -> Pinecone:
        """Construct Pinecone wrapper from raw documents.

        This is a user friendly interface that:
            1. Embeds documents.
            2. Adds the documents to a provided Pinecone index

        This is intended to be a quick way to get started.

        Example:
            .. code-block:: python

                from langchain import Pinecone
                from langchain.embeddings import OpenAIEmbeddings
                import pinecone

                # The environment should be the one specified next to the API key
                # in your Pinecone console
                pinecone.init(api_key="***", environment="...")
                embeddings = OpenAIEmbeddings()
                pinecone = Pinecone.from_texts(
                    texts,
                    embeddings,
                    index_name="langchain-demo"
                )
        """
        try:
            import pinecone
        except ImportError:
            raise ValueError(
                "Could not import pinecone python package. "
                "Please install it with `pip install pinecone-client`."
            )

        indexes = pinecone.list_indexes()  # checks if provided index exists

        if index_name in indexes:
            index = pinecone.Index(index_name)
        elif len(indexes) == 0:
            raise ValueError(
                "No active indexes found in your Pinecone project, "
                "are you sure you're using the right API key and environment?"
            )
        else:
            raise ValueError(
                f"Index '{index_name}' not found in your Pinecone project. "
                f"Did you mean one of the following indexes: {', '.join(indexes)}"
            )
        for i in range(0, len(texts), batch_size):
            # set end position of batch
            i_end = min(i + batch_size, len(texts))
            # get batch of texts and ids
            lines_batch = texts[i:i_end]
            # create ids if not provided
            if ids:
                ids_batch = ids[i:i_end]
            else:
                ids_batch = [str(uuid.uuid4()) for n in range(i, i_end)]
            # create embeddings
            embeds = embedding.embed_documents(lines_batch)
            # prep metadata and upsert batch
            if metadatas:
                metadata = metadatas[i:i_end]
            else:
                metadata = [{} for _ in range(i, i_end)]
            for j, line in enumerate(lines_batch):
                metadata[j][text_key] = line
            to_upsert = zip(ids_batch, embeds, metadata)
            # upsert to Pinecone
            _upsert_kwargs = upsert_kwargs or {}
            index.upsert(vectors=list(to_upsert), namespace=namespace, **_upsert_kwargs)
        return cls(index, embedding.embed_query, text_key, namespace, **kwargs)

    @classmethod
    def from_existing_index(
        cls,
        index_name: str,
        embedding: Embeddings,
        text_key: str = "text",
        namespace: Optional[str] = None,
    ) -> Pinecone:
        """Load pinecone vectorstore from index name."""
        try:
            import pinecone
        except ImportError:
            raise ValueError(
                "Could not import pinecone python package. "
                "Please install it with `pip install pinecone-client`."
            )

        return cls(
            pinecone.Index(index_name), embedding.embed_query, text_key, namespace
        )

    def delete(
        self,
        ids: Optional[List[str]] = None,
        delete_all: Optional[bool] = None,
        namespace: Optional[str] = None,
        filter: Optional[dict] = None,
        **kwargs: Any,
    ) -> None:
        """Delete by vector IDs or filter.
        Args:
            ids: List of ids to delete.
            filter: Dictionary of conditions to filter vectors to delete.
        """

        if namespace is None:
            namespace = self._namespace

        if delete_all:
            self._index.delete(delete_all=True, namespace=namespace, **kwargs)
        elif ids is not None:
            chunk_size = 1000
            for i in range(0, len(ids), chunk_size):
                chunk = ids[i : i + chunk_size]
                self._index.delete(ids=chunk, namespace=namespace, **kwargs)
        elif filter is not None:
            self._index.delete(filter=filter, namespace=namespace, **kwargs)
        else:
            raise ValueError("Either ids, delete_all, or filter must be provided.")

        return None