Spaces:
Runtime error
Runtime error
File size: 10,025 Bytes
374c4cd 7001a0c 374c4cd 3da5d7f 832d1e9 bb92a3d 832d1e9 29b883a 374c4cd 29b883a 374c4cd cc4a23e 374c4cd f558f8c 374c4cd 2c36339 374c4cd 832d1e9 374c4cd 9a093dc 374c4cd 2c36339 374c4cd 82259fb 374c4cd dbdf880 374c4cd 2c36339 acba9b5 cc4a23e 374c4cd 832d1e9 374c4cd b30c13a 374c4cd 2c36339 374c4cd 57e0a00 832d1e9 374c4cd 832d1e9 374c4cd 1f91b7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import os
import gradio as gr
import openai
import re
import numpy as np
from sklearn.neighbors import NearestNeighbors
import tensorflow_hub as hub
import fitz
def add_source_numbers(lst, source_name="Source", use_source=True):
if use_source:
return [f'[{idx + 1}]\t "{item[0]}"\n{source_name}: {item[1]}' for idx, item in enumerate(lst)]
else:
return [f'[{idx + 1}]\t "{item}"' for idx, item in enumerate(lst)]
def add_details(lst):
nodes = []
for index, txt in enumerate(lst):
brief = txt[:25].replace("\n", "")
nodes.append(
f"<details><summary>{brief}...</summary><p>{txt}</p></details>"
)
return nodes
prompt_template = "Instructions: Compose a comprehensive reply to the query using the search results given. " \
"If the search results mention multiple subjects " \
"with the same name, create separate answers for each. Only include information found in the results and " \
"don't add any additional information. Make sure the answer is correct and don't output false content. " \
"Ignore outlier search results which has nothing to do with the question. Only answer what is asked. " \
"The answer should be short and concise. \n\nQuery: {question}\nAnswer: "
MODELS = ["text-davinci-001", "text-davinci-002", "text-davinci-003"]
LANGUAGES = [
"English",
"简体中文",
"日本語",
"Deutsch",
"Vietnamese"
]
def set_openai_api_key(my_api_key):
openai.api_key = my_api_key
return gr.update(visible = True)
def add_source_numbers(lst):
return [item[:3] + '\t' + item[3:] for item in (lst)]
def add_details(lst):
nodes = []
for index, txt in enumerate(lst):
brief = txt[:25].replace("\n", "")
nodes.append(
f"<details><summary>{brief}...</summary><p>{txt}</p></details>"
)
return nodes
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
def pdf_to_text(files_src, start_page=1, end_page=None):
text_list = []
for file in files_src:
if (os.path.splitext(file.name)[1]).lower() == ".pdf":
doc = fitz.open(file.name)
total_pages = doc.page_count
# if end_page is None:
end_page = total_pages
for i in range(start_page - 1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(' ') for t in texts]
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i:i + word_length]
if (i + word_length) > len(words) and (len(chunk) < word_length) and (
len(text_toks) != (idx + 1)):
text_toks[idx + 1] = chunk + text_toks[idx + 1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[{idx + start_page}]' + ' ' + '"' + chunk + '"'
chunks.append(chunk)
return chunks
def embedding(model, files_src, batch=1000):
name_file = '_'.join([os.path.basename(file.name).split('.')[0] for file in files_src])
embeddings_file = f"{name_file}.npy"
texts = pdf_to_text(files_src)
chunks = text_to_chunks(texts)
if os.path.isfile(embeddings_file):
embeddings = np.load(embeddings_file)
return embeddings, chunks
data = chunks
embeddings = []
for i in range(0, len(data), batch):
text_batch = data[i:(i + batch)]
emb_batch = model(text_batch)
embeddings.append(emb_batch)
embeddings = np.vstack(embeddings)
np.save(embeddings_file, embeddings)
return embeddings, chunks
def get_top_chunks(inp_emb, data, n_neighbors=5):
n_neighbors = min(n_neighbors, len(data))
nn = NearestNeighbors(n_neighbors=n_neighbors)
nn.fit(data)
neighbors = nn.kneighbors(inp_emb, return_distance=False)[0]
return neighbors
def predict(
my_api_key,
history,
chatbot,
inputs,
temperature,
lang = LANGUAGES[0],
selected_model=MODELS[0],
files=None
):
old_inputs = None
if files:
old_inputs = inputs
emb_model = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
vector_emb, chunks = embedding(emb_model, files)
input_emb = emb_model([inputs])
index_top_chunks = get_top_chunks(input_emb, vector_emb)
topn_chunks = [chunks[i] for i in index_top_chunks]
prompt = ""
prompt += 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += prompt_template
prompt += f"Query: {inputs}. Reply in {lang}\nAnswer:"
inputs = prompt
reference_results = add_source_numbers(topn_chunks)
display_reference = add_details(reference_results)
display_reference = "\n\n" + "".join(display_reference)
else:
display_reference = ""
history.append(inputs)
if old_inputs:
chatbot.append((old_inputs, ""))
else:
chatbot.append((inputs, ""))
openai.api_key = my_api_key
completions = openai.Completion.create(
engine=selected_model,
prompt=inputs,
max_tokens=256,
stop=None,
temperature=temperature,
)
message = completions.choices[0].text
if old_inputs is not None:
history[-1] = old_inputs
chatbot[-1] = (chatbot[-1][0], message + display_reference)
return chatbot, history
# Create theme
with open("custom.css", "r", encoding="utf-8") as f:
customCSS = f.read()
beautiful_theme = gr.themes.Soft(
primary_hue=gr.themes.Color(
c50="#02C160",
c100="rgba(2, 193, 96, 0.2)",
c200="#02C160",
c300="rgba(2, 193, 96, 0.32)",
c400="rgba(2, 193, 96, 0.32)",
c500="rgba(2, 193, 96, 1.0)",
c600="rgba(2, 193, 96, 1.0)",
c700="rgba(2, 193, 96, 0.32)",
c800="rgba(2, 193, 96, 0.32)",
c900="#02C160",
c950="#02C160",
),
radius_size=gr.themes.sizes.radius_sm,
).set(
button_primary_background_fill="#06AE56",
button_primary_background_fill_dark="#06AE56",
button_primary_background_fill_hover="#07C863",
button_primary_border_color="#06AE56",
button_primary_border_color_dark="#06AE56",
button_primary_text_color="#FFFFFF",
button_primary_text_color_dark="#FFFFFF",
block_title_text_color="*primary_500",
block_title_background_fill="*primary_100",
input_background_fill="#F6F6F6",
)
# Gradio app
title = """<h1 align="left" style="min-width:200px; margin-top:6px; white-space: nowrap;">ChatGPT 🚀</h1>"""
with gr.Blocks(css=customCSS, theme=beautiful_theme) as demo:
history = gr.State([])
user_question = gr.State("")
with gr.Row():
with gr.Column(scale=1):
gr.HTML(title)
with gr.Row().style(equal_height=True):
with gr.Column(scale=5):
with gr.Row():
chatbot = gr.Chatbot(elem_id="chatbot").style(height="100%")
with gr.Row(visible=False) as input_raws:
with gr.Column(scale=12):
user_input = gr.Textbox(
show_label=False, placeholder="Enter here"
).style(container=False)
with gr.Column(min_width=70, scale=1):
submitBtn = gr.Button("Send", variant="primary")
with gr.Column():
with gr.Column(min_width=50, scale=1):
with gr.Tab(label="ChatGPT"):
gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a '
f'href="https://platform.openai.com/account/api-keys">here</a></p>')
openAI_key=gr.Textbox(label='Enter your OpenAI API key here')
f'href="https://platform.openai.com/account/api-keys">here</a></p>')
openAI_key=gr.Textbox(label='Enter your OpenAI API key here and press Enter')
model_select_dropdown = gr.Dropdown(
label="Select model", choices=MODELS, multiselect=False, value=MODELS[0]
)
language_select_dropdown = gr.Dropdown(
label="Select reply language", choices=LANGUAGES, multiselect=False, value=LANGUAGES[0]
)
index_files = gr.Files(label="Files", type="file", multiple=True)
with gr.Tab(label="Advanced"):
gr.Markdown(
"⚠️Be careful to change ⚠️\n\nIf you can't use it, please restore the default settings")
with gr.Tab(label="Advanced"):
with gr.Accordion("Parameter", open=False):
temperature = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.0,
step=0.1,
interactive=True,
label="Temperature",
)
openAI_key.submit(set_openai_api_key, [openAI_key], [input_raws])
user_input.submit(predict, inputs=[history, chatbot, user_input, temperature, language_select_dropdown, model_select_dropdown, index_files],
outputs=[chatbot, history])
user_input.submit(lambda: "", None, user_input)
submitBtn.click(predict, inputs=[history, chatbot, user_input, temperature, language_select_dropdown, model_select_dropdown, index_files],
outputs=[chatbot, history])
submitBtn.click(lambda: "", None, user_input)
demo.queue(concurrency_count=10).launch(server_name="0.0.0.0", server_port=7862)
|