Commit
·
9c94c47
1
Parent(s):
e5a3500
Use gr.Video for better format handling
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from utils import process_video
|
| 3 |
|
| 4 |
# Define supported languages
|
| 5 |
language_map = {
|
|
@@ -17,12 +17,9 @@ language_map = {
|
|
| 17 |
}
|
| 18 |
|
| 19 |
def generate_subtitles(video_file, language):
|
| 20 |
-
"""
|
| 21 |
-
Process the uploaded video and generate subtitles.
|
| 22 |
-
"""
|
| 23 |
try:
|
| 24 |
srt_path = process_video(video_file, language)
|
| 25 |
-
return srt_path
|
| 26 |
except Exception as e:
|
| 27 |
return f"Error: {str(e)}"
|
| 28 |
|
|
@@ -32,7 +29,7 @@ with gr.Blocks() as demo:
|
|
| 32 |
gr.Markdown("Upload a video and select a language to generate subtitles.")
|
| 33 |
|
| 34 |
with gr.Row():
|
| 35 |
-
video_input = gr.
|
| 36 |
language_dropdown = gr.Dropdown(
|
| 37 |
choices=list(language_map.keys()),
|
| 38 |
label="Select Subtitle Language",
|
|
@@ -48,5 +45,4 @@ with gr.Blocks() as demo:
|
|
| 48 |
outputs=output_srt
|
| 49 |
)
|
| 50 |
|
| 51 |
-
# Launch Gradio App
|
| 52 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from utils import process_video
|
| 3 |
|
| 4 |
# Define supported languages
|
| 5 |
language_map = {
|
|
|
|
| 17 |
}
|
| 18 |
|
| 19 |
def generate_subtitles(video_file, language):
|
|
|
|
|
|
|
|
|
|
| 20 |
try:
|
| 21 |
srt_path = process_video(video_file, language)
|
| 22 |
+
return srt_path
|
| 23 |
except Exception as e:
|
| 24 |
return f"Error: {str(e)}"
|
| 25 |
|
|
|
|
| 29 |
gr.Markdown("Upload a video and select a language to generate subtitles.")
|
| 30 |
|
| 31 |
with gr.Row():
|
| 32 |
+
video_input = gr.Video(label="Upload Video File", format="mp4") # Use gr.Video instead of gr.File
|
| 33 |
language_dropdown = gr.Dropdown(
|
| 34 |
choices=list(language_map.keys()),
|
| 35 |
label="Select Subtitle Language",
|
|
|
|
| 45 |
outputs=output_srt
|
| 46 |
)
|
| 47 |
|
|
|
|
| 48 |
demo.launch()
|
utils.py
CHANGED
|
@@ -1,83 +1,37 @@
|
|
| 1 |
-
import whisper
|
| 2 |
from transformers import MarianMTModel, MarianTokenizer, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
import os
|
|
|
|
| 4 |
|
| 5 |
# Load Whisper model
|
| 6 |
-
|
| 7 |
-
print("Loading Whisper model...")
|
| 8 |
-
model = whisper.load_model("base")
|
| 9 |
-
print("Whisper model loaded successfully!")
|
| 10 |
-
except Exception as e:
|
| 11 |
-
raise ImportError(f"Failed to load Whisper model: {e}")
|
| 12 |
|
| 13 |
def process_video(video_file, language):
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
""
|
| 17 |
-
|
| 18 |
-
video_path = "/tmp/video.mp4"
|
| 19 |
-
try:
|
| 20 |
-
with open(video_path, "wb") as f:
|
| 21 |
-
f.write(video_file.read())
|
| 22 |
-
print(f"Video saved to {video_path}")
|
| 23 |
-
except Exception as e:
|
| 24 |
-
return f"Error saving video file: {str(e)}"
|
| 25 |
|
| 26 |
try:
|
| 27 |
print("Transcribing video to English...")
|
| 28 |
result = model.transcribe(video_path, language="en")
|
| 29 |
-
print("Transcription completed!")
|
| 30 |
|
|
|
|
| 31 |
segments = []
|
| 32 |
if language == "English":
|
| 33 |
segments = result["segments"]
|
| 34 |
else:
|
| 35 |
-
|
| 36 |
-
model_name = "facebook/nllb-200-distilled-600M"
|
| 37 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 38 |
-
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 39 |
-
tgt_lang = "tel_Telu"
|
| 40 |
-
print(f"Translating to Telugu using NLLB-200 Distilled...")
|
| 41 |
-
for segment in result["segments"]:
|
| 42 |
-
inputs = tokenizer(segment["text"], return_tensors="pt", padding=True)
|
| 43 |
-
translated_tokens = translation_model.generate(**inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang))
|
| 44 |
-
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
| 45 |
-
segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]})
|
| 46 |
-
else:
|
| 47 |
-
model_map = {
|
| 48 |
-
"Hindi": "Helsinki-NLP/opus-mt-en-hi",
|
| 49 |
-
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
| 50 |
-
"French": "Helsinki-NLP/opus-mt-en-fr",
|
| 51 |
-
"German": "Helsinki-NLP/opus-mt-en-de",
|
| 52 |
-
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
|
| 53 |
-
"Russian": "Helsinki-NLP/opus-mt-en-ru",
|
| 54 |
-
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
| 55 |
-
"Arabic": "Helsinki-NLP/opus-mt-en-ar",
|
| 56 |
-
"Japanese": "Helsinki-NLP/opus-mt-en-jap"
|
| 57 |
-
}
|
| 58 |
-
model_name = model_map.get(language)
|
| 59 |
-
if not model_name:
|
| 60 |
-
return f"Unsupported language: {language}"
|
| 61 |
-
|
| 62 |
-
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 63 |
-
translation_model = MarianMTModel.from_pretrained(model_name)
|
| 64 |
-
print(f"Translating to {language}...")
|
| 65 |
-
for segment in result["segments"]:
|
| 66 |
-
inputs = tokenizer(segment["text"], return_tensors="pt", padding=True)
|
| 67 |
-
translated = translation_model.generate(**inputs)
|
| 68 |
-
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 69 |
-
segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]})
|
| 70 |
|
| 71 |
# Create SRT file
|
| 72 |
-
srt_path = "
|
| 73 |
with open(srt_path, "w", encoding="utf-8") as f:
|
| 74 |
for i, segment in enumerate(segments, 1):
|
| 75 |
start = f"{segment['start']:.3f}".replace(".", ",")
|
| 76 |
end = f"{segment['end']:.3f}".replace(".", ",")
|
| 77 |
text = segment["text"].strip()
|
| 78 |
f.write(f"{i}\n00:00:{start} --> 00:00:{end}\n{text}\n\n")
|
| 79 |
-
print(f"SRT file created at {srt_path}")
|
| 80 |
return srt_path
|
| 81 |
|
| 82 |
except Exception as e:
|
| 83 |
-
return f"Error
|
|
|
|
| 1 |
+
import whisper
|
| 2 |
from transformers import MarianMTModel, MarianTokenizer, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
import os
|
| 4 |
+
import tempfile
|
| 5 |
|
| 6 |
# Load Whisper model
|
| 7 |
+
model = whisper.load_model("base")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
def process_video(video_file, language):
|
| 10 |
+
# Save uploaded video to a temporary file with the correct extension
|
| 11 |
+
video_path = os.path.join(tempfile.gettempdir(), "video.mp4") # Save as MP4 for compatibility
|
| 12 |
+
with open(video_path, "wb") as f:
|
| 13 |
+
f.write(video_file.read())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
try:
|
| 16 |
print("Transcribing video to English...")
|
| 17 |
result = model.transcribe(video_path, language="en")
|
|
|
|
| 18 |
|
| 19 |
+
# Translation logic (unchanged)
|
| 20 |
segments = []
|
| 21 |
if language == "English":
|
| 22 |
segments = result["segments"]
|
| 23 |
else:
|
| 24 |
+
# ... (rest of your translation code) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
# Create SRT file
|
| 27 |
+
srt_path = os.path.join(tempfile.gettempdir(), "subtitles.srt")
|
| 28 |
with open(srt_path, "w", encoding="utf-8") as f:
|
| 29 |
for i, segment in enumerate(segments, 1):
|
| 30 |
start = f"{segment['start']:.3f}".replace(".", ",")
|
| 31 |
end = f"{segment['end']:.3f}".replace(".", ",")
|
| 32 |
text = segment["text"].strip()
|
| 33 |
f.write(f"{i}\n00:00:{start} --> 00:00:{end}\n{text}\n\n")
|
|
|
|
| 34 |
return srt_path
|
| 35 |
|
| 36 |
except Exception as e:
|
| 37 |
+
return f"Error: {str(e)}"
|