Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL
|
| 2 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 3 |
import torch
|
| 4 |
import gradio as gr
|
|
@@ -7,8 +7,6 @@ import spaces
|
|
| 7 |
|
| 8 |
lora1 = "OedoSoldier/detail-tweaker-lora"
|
| 9 |
|
| 10 |
-
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to("cuda")
|
| 11 |
-
|
| 12 |
@spaces.GPU
|
| 13 |
def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_scale=7.0,model="Real6.0",num_images=1, width=512, height=512):
|
| 14 |
|
|
@@ -20,7 +18,12 @@ def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_sca
|
|
| 20 |
|
| 21 |
else:
|
| 22 |
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
text_encoder = CLIPTextModel.from_pretrained(
|
| 26 |
model_id,
|
|
@@ -31,6 +34,11 @@ def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_sca
|
|
| 31 |
model_id,
|
| 32 |
subfolder="tokenizer"
|
| 33 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
pipe = DiffusionPipeline.from_pretrained(
|
| 36 |
model_id,
|
|
|
|
| 1 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL, UNet2DConditionModel
|
| 2 |
from transformers import CLIPTextModel, CLIPTokenizer
|
| 3 |
import torch
|
| 4 |
import gradio as gr
|
|
|
|
| 7 |
|
| 8 |
lora1 = "OedoSoldier/detail-tweaker-lora"
|
| 9 |
|
|
|
|
|
|
|
| 10 |
@spaces.GPU
|
| 11 |
def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_scale=7.0,model="Real6.0",num_images=1, width=512, height=512):
|
| 12 |
|
|
|
|
| 18 |
|
| 19 |
else:
|
| 20 |
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
vae = AutoencoderKL.from_pretrained(
|
| 24 |
+
model_id,
|
| 25 |
+
subfolder="vae"
|
| 26 |
+
).to("cuda")
|
| 27 |
|
| 28 |
text_encoder = CLIPTextModel.from_pretrained(
|
| 29 |
model_id,
|
|
|
|
| 34 |
model_id,
|
| 35 |
subfolder="tokenizer"
|
| 36 |
)
|
| 37 |
+
|
| 38 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 39 |
+
model_id,
|
| 40 |
+
subfolder="unet"
|
| 41 |
+
).to("cuda")
|
| 42 |
|
| 43 |
pipe = DiffusionPipeline.from_pretrained(
|
| 44 |
model_id,
|