# import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # def respond( # message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch() import torch import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import os # Define model names MODEL_1_PATH = "adapter_model.safetensors" # Your fine-tuned model MODEL_2_NAME = "sarvamai/sarvam-1" # The base model on Hugging Face Hub # Load the tokenizer (same for both models) TOKENIZER_NAME = "sarvamai/sarvam-1" tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME) # Function to load a model def load_model(model_choice): if model_choice == "Hugging face dataset": model = AutoModelForCausalLM.from_pretrained(TOKENIZER_NAME) model.load_adapter(MODEL_1_PATH, "safe_tensors") # Load safetensors adapter else: model = AutoModelForCausalLM.from_pretrained(MODEL_2_NAME) model.eval() return model # Load default model on startup current_model = load_model("Hugging face dataset") # Chatbot response function def respond(message, history, model_choice, max_tokens, temperature, top_p): global current_model # Switch model if user selects a different one if (model_choice == "Hugging face dataset" and current_model is not None and current_model.config.name_or_path != MODEL_1_PATH) or \ (model_choice == "Proprietary dataset1" and current_model is not None and current_model.config.name_or_path != MODEL_2_NAME): current_model = load_model(model_choice) # Convert chat history to format messages = [{"role": "system", "content": "You are a friendly AI assistant."}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Tokenize and generate response inputs = tokenizer.apply_chat_template(messages, tokenize=False) input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") output_tokens = current_model.generate( **input_tokens, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) response = tokenizer.decode(output_tokens[0], skip_special_tokens=True) return response # Define Gradio Chat Interface demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Dropdown(choices=["Hugging face dataset", "Proprietary dataset1"], value="Fine-Tuned Model", label="Select Model"), gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], ) if __name__ == "__main__": demo.launch()