Update Training/Code/train.py
Browse files- Training/Code/train.py +77 -38
Training/Code/train.py
CHANGED
|
@@ -1,60 +1,99 @@
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 3 |
from tensorflow.keras.models import Model
|
| 4 |
-
from tensorflow.keras.layers import Dense, Dropout, GlobalAveragePooling2D
|
|
|
|
| 5 |
from tensorflow.keras.optimizers import Adam
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
train_datagen = ImageDataGenerator(
|
| 17 |
rescale=1./255,
|
| 18 |
-
rotation_range=
|
| 19 |
-
zoom_range=0.
|
|
|
|
|
|
|
|
|
|
| 20 |
horizontal_flip=True,
|
| 21 |
-
|
| 22 |
-
width_shift_range=0.2,
|
| 23 |
-
height_shift_range=0.2
|
| 24 |
)
|
| 25 |
-
val_datagen = ImageDataGenerator(rescale=1./255)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
img_size = 128
|
| 29 |
|
| 30 |
train_generator = train_datagen.flow_from_directory(
|
| 31 |
-
train_dir,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
val_dir,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
-
#
|
|
|
|
| 41 |
x = base_model.output
|
| 42 |
x = GlobalAveragePooling2D()(x)
|
| 43 |
-
x =
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
#
|
| 60 |
-
model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
| 5 |
+
from tensorflow.keras.applications import EfficientNetV2B1
|
| 6 |
from tensorflow.keras.models import Model
|
| 7 |
+
from tensorflow.keras.layers import Dense, Dropout, GlobalAveragePooling2D
|
| 8 |
+
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
|
| 9 |
from tensorflow.keras.optimizers import Adam
|
| 10 |
+
from sklearn.utils.class_weight import compute_class_weight
|
| 11 |
+
|
| 12 |
+
# ==================== Paths ====================
|
| 13 |
+
train_dir = "/content/combine_dataset/train"
|
| 14 |
+
val_dir = "/content/combine_dataset/test"
|
| 15 |
|
| 16 |
+
# ==================== Parameters ====================
|
| 17 |
+
img_size = (192, 192) # Recommended for EfficientNetV2B1
|
| 18 |
+
batch_size = 32
|
| 19 |
+
epochs = 30
|
| 20 |
+
num_classes = 7
|
| 21 |
|
| 22 |
+
# ==================== Data Augmentation ====================
|
| 23 |
train_datagen = ImageDataGenerator(
|
| 24 |
rescale=1./255,
|
| 25 |
+
rotation_range=10,
|
| 26 |
+
zoom_range=0.1,
|
| 27 |
+
width_shift_range=0.05,
|
| 28 |
+
height_shift_range=0.05,
|
| 29 |
+
brightness_range=[0.9, 1.1],
|
| 30 |
horizontal_flip=True,
|
| 31 |
+
fill_mode='nearest'
|
|
|
|
|
|
|
| 32 |
)
|
|
|
|
| 33 |
|
| 34 |
+
val_datagen = ImageDataGenerator(rescale=1./255)
|
|
|
|
| 35 |
|
| 36 |
train_generator = train_datagen.flow_from_directory(
|
| 37 |
+
train_dir,
|
| 38 |
+
target_size=img_size,
|
| 39 |
+
batch_size=batch_size,
|
| 40 |
+
class_mode='categorical',
|
| 41 |
+
shuffle=True
|
| 42 |
+
)
|
| 43 |
|
| 44 |
+
val_generator = val_datagen.flow_from_directory(
|
| 45 |
+
val_dir,
|
| 46 |
+
target_size=img_size,
|
| 47 |
+
batch_size=batch_size,
|
| 48 |
+
class_mode='categorical',
|
| 49 |
+
shuffle=False
|
| 50 |
+
)
|
| 51 |
|
| 52 |
+
# ==================== Compute Class Weights ====================
|
| 53 |
+
labels = train_generator.classes
|
| 54 |
+
class_weights = compute_class_weight(class_weight='balanced', classes=np.unique(labels), y=labels)
|
| 55 |
+
class_weights = dict(enumerate(class_weights))
|
| 56 |
|
| 57 |
+
# ==================== Build Model ====================
|
| 58 |
+
base_model = EfficientNetV2B1(include_top=False, input_shape=(192, 192, 3), weights='imagenet')
|
| 59 |
x = base_model.output
|
| 60 |
x = GlobalAveragePooling2D()(x)
|
| 61 |
+
x = Dropout(0.4)(x)
|
| 62 |
+
output = Dense(num_classes, activation='softmax')(x)
|
| 63 |
+
model = Model(inputs=base_model.input, outputs=output)
|
| 64 |
+
|
| 65 |
+
# ==================== Compile Model ====================
|
| 66 |
+
optimizer = Adam(learning_rate=1e-5)
|
| 67 |
+
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
|
| 68 |
|
| 69 |
+
# ==================== Callbacks ====================
|
| 70 |
+
checkpoint = ModelCheckpoint(
|
| 71 |
+
"/content/emotion_model.keras",
|
| 72 |
+
monitor='val_accuracy',
|
| 73 |
+
save_best_only=True,
|
| 74 |
+
verbose=1
|
| 75 |
+
)
|
| 76 |
|
| 77 |
+
early_stop = EarlyStopping(
|
| 78 |
+
monitor='val_loss',
|
| 79 |
+
patience=7,
|
| 80 |
+
restore_best_weights=True,
|
| 81 |
+
verbose=1
|
| 82 |
+
)
|
| 83 |
|
| 84 |
+
lr_schedule = ReduceLROnPlateau(
|
| 85 |
+
monitor='val_loss',
|
| 86 |
+
factor=0.5,
|
| 87 |
+
patience=3,
|
| 88 |
+
verbose=1,
|
| 89 |
+
min_lr=1e-6
|
| 90 |
+
)
|
| 91 |
|
| 92 |
+
# ==================== Train Model ====================
|
| 93 |
+
model.fit(
|
| 94 |
+
train_generator,
|
| 95 |
+
validation_data=val_generator,
|
| 96 |
+
epochs=epochs,
|
| 97 |
+
callbacks=[checkpoint, early_stop, lr_schedule],
|
| 98 |
+
class_weight=class_weights
|
| 99 |
+
)
|