Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoProcessor, LlavaForConditionalGeneration, BitsAndBytesConfig | |
from peft import PeftModel | |
from deep_translator import GoogleTranslator | |
import gradio as gr | |
import base64 | |
model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl" | |
quantization_config = BitsAndBytesConfig(load_in_4bit=True) | |
base_model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, torch_dtype=torch.float16) | |
# Load the PEFT Lora adapter | |
peft_lora_adapter_path = "Praveen0309/llava-1.5-7b-hf-ft-mix-vsft-3" | |
peft_lora_adapter = PeftModel.from_pretrained(base_model, peft_lora_adapter_path, adapter_name="lora_adapter") | |
base_model.load_adapter(peft_lora_adapter_path, adapter_name="lora_adapter") | |
processor = AutoProcessor.from_pretrained("HuggingFaceH4/vsft-llava-1.5-7b-hf-trl") | |
# Function to translate text from Bengali to English | |
def deep_translator_bn_en(input_sentence): | |
english_translation = GoogleTranslator(source="bn", target="en").translate(input_sentence) | |
return english_translation | |
# Function to translate text from English to Bengali | |
def deep_translator_en_bn(input_sentence): | |
bengali_translation = GoogleTranslator(source="en", target="bn").translate(input_sentence) | |
return bengali_translation | |
def inference(image, image_prompt): | |
prompt = f"USER: <image>\n{image_prompt} ASSISTANT:" | |
# Assuming your model can handle PIL images | |
image = image.convert("RGB") # Ensure image is RGB mode | |
inputs = processor(text=prompt, images=image, return_tensors="pt") | |
generate_ids = base_model.generate(**inputs, max_new_tokens=15) | |
decoded_response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
return decoded_response | |
def image_to_base64(image_path): | |
with open(image_path, 'rb') as img: | |
encoded_string = base64.b64encode(img.read()) | |
return encoded_string.decode('utf-8') | |
# Function that takes User Inputs and displays it on ChatUI | |
def query_message(history,txt,img): | |
image_prompt = deep_translator_bn_en(txt) | |
history += [(image_prompt,None)] | |
base64 = image_to_base64(img) | |
data_url = f"data:image/jpeg;base64,{base64}" | |
history += [(f"{image_prompt} ", None)] | |
return history | |
# Function that takes User Inputs, generates Response and displays on Chat UI | |
def llm_response(history,text,img): | |
image_prompt = deep_translator_bn_en(text) | |
response = inference(img,image_prompt) | |
assistant_index = response.find("ASSISTANT:") | |
extracted_string = response[assistant_index + len("ASSISTANT:"):].strip() | |
output = deep_translator_en_bn(extracted_string) | |
history += [(text,output)] | |
return history | |
# Interface Code | |
with gr.Blocks() as app: | |
with gr.Row(): | |
image_box = gr.Image(type="pil") | |
chatbot = gr.Chatbot( | |
scale = 2, | |
height=500 | |
) | |
text_box = gr.Textbox( | |
placeholder="Enter text and press enter, or upload an image", | |
container=False, | |
) | |
btn = gr.Button("Submit") | |
clicked = btn.click(query_message, | |
[chatbot,text_box,image_box], | |
chatbot | |
).then(llm_response, | |
[chatbot,text_box,image_box], | |
chatbot | |
) | |
app.queue() | |
app.launch(debug=True) | |