import cv2 import numpy as np import streamlit as st from camera_input_live import camera_input_live # Load Haarcascade for face detection cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") # Streamlit app title st.title("Live Object Detection with Camera") st.subheader("Hold your face in front of the webcam to see real-time detection.") # Capture live camera input image = camera_input_live() if image is not None: # Convert the image to OpenCV format bytes_data = image.getvalue() cv2_img = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR) # Convert to grayscale for face detection gray = cv2.cvtColor(cv2_img, cv2.COLOR_BGR2GRAY) # Detect faces in the image faces = cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=3) # Draw rectangles around detected faces for (x, y, w, h) in faces: cv2.rectangle(cv2_img, (x, y), (x + w, y + h), (0, 255, 0), 3) cv2.putText(cv2_img, "Face", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) # Display the annotated image st.image(cv2_img, channels="BGR", caption="Detected Faces", use_container_width=True)