Prathamesh1420's picture
Update app.py
ca246a0 verified
raw
history blame
28 kB
'''
import os
import gradio as gr
import requests
from pinecone import Pinecone
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
from langchain.embeddings import HuggingFaceEmbeddings
# ----------- 1. Custom LLM to call your LitServe endpoint -----------
class LitServeLLM(LLM):
endpoint_url: str
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
payload = {"prompt": prompt}
response = requests.post(self.endpoint_url, json=payload)
if response.status_code == 200:
data = response.json()
return data.get("response", "").strip()
else:
raise ValueError(f"Request failed: {response.status_code} {response.text}")
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"endpoint_url": self.endpoint_url}
@property
def _llm_type(self) -> str:
return "litserve_llm"
# ----------- 2. Connect to Pinecone -----------
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=PINECONE_API_KEY)
index = pc.Index("rag-granite-index")
# ----------- 3. Load embedding model -----------
embeddings_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# ----------- 4. Function to get top context from Pinecone -----------
def get_retrieved_context(query: str, top_k=3):
query_embedding = embeddings_model.embed_query(query)
results = index.query(
namespace="rag-ns",
vector=query_embedding,
top_k=top_k,
include_metadata=True
)
context_parts = [match['metadata']['text'] for match in results['matches']]
return "\n".join(context_parts)
# ----------- 5. Create LLMChain with your model -----------
model = LitServeLLM(
endpoint_url="https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
)
prompt = PromptTemplate(
input_variables=["context", "question"],
template="""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
"""
)
llm_chain = LLMChain(llm=model, prompt=prompt)
# ----------- 6. Main RAG Function -----------
def rag_pipeline(question):
try:
retrieved_context = get_retrieved_context(question)
response = llm_chain.invoke({
"context": retrieved_context,
"question": question
})["text"].strip()
# Only keep what's after "Answer:"
if "Answer:" in response:
response = response.split("Answer:", 1)[-1].strip()
return response
except Exception as e:
return f"Error: {str(e)}"
# ----------- 7. Gradio UI -----------
with gr.Blocks() as demo:
gr.Markdown("# 🧠 RAG Chatbot (Pinecone + LitServe)")
question_input = gr.Textbox(label="Ask your question here")
answer_output = gr.Textbox(label="Answer")
ask_button = gr.Button("Get Answer")
ask_button.click(rag_pipeline, inputs=question_input, outputs=answer_output)
if __name__ == "__main__":
demo.launch()
'''
'''
working
import os
import gradio as gr
import requests
import mlflow
import dagshub
from pinecone import Pinecone
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
import time
from langchain_community.embeddings import HuggingFaceEmbeddings
from dotenv import load_dotenv
from datetime import datetime
# Load environment variables
pinecone_api_key = os.environ["PINECONE_API_KEY"]
mlflow_tracking_uri = os.environ["MLFLOW_TRACKING_URI"]
# ----------- DagsHub & MLflow Setup -----------
dagshub.init(
repo_owner='prathamesh.khade20',
repo_name='Maintenance_AI_website',
mlflow=True
)
mlflow.set_tracking_uri(mlflow_tracking_uri)
mlflow.set_experiment("Maintenance-RAG-Chatbot")
mlflow.langchain.autolog()
# Initialize MLflow run for app configuration
with mlflow.start_run(run_name=f"App-Config-{datetime.now().strftime('%Y%m%d-%H%M%S')}") as setup_run:
# Log environment configuration
mlflow.log_params({
"pinecone_index": "rag-granite-index",
"embedding_model": "all-MiniLM-L6-v2",
"namespace": "rag-ns",
"top_k": 3,
"llm_endpoint": "https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
})
# Log important files as artifacts
mlflow.log_text("""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
""", "artifacts/prompt_template.txt")
# ----------- 1. Custom LLM for LitServe endpoint -----------
class LitServeLLM(LLM):
endpoint_url: str
@mlflow.trace
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
payload = {"prompt": prompt}
with mlflow.start_span("lit_serve_request"):
start_time = time.time()
response = requests.post(self.endpoint_url, json=payload)
latency = time.time() - start_time
mlflow.log_metric("lit_serve_latency", latency)
if response.status_code == 200:
data = response.json()
mlflow.log_metric("response_tokens", len(data.get("response", "").split()))
return data.get("response", "").strip()
else:
mlflow.log_metric("request_errors", 1)
error_info = {
"status_code": response.status_code,
"error": response.text,
"timestamp": datetime.now().isoformat()
}
mlflow.log_dict(error_info, "artifacts/error_log.json")
raise ValueError(f"Request failed: {response.status_code}")
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"endpoint_url": self.endpoint_url}
@property
def _llm_type(self) -> str:
return "litserve_llm"
# ----------- 2. Pinecone Connection -----------
@mlflow.trace
def init_pinecone():
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=PINECONE_API_KEY)
return pc.Index("rag-granite-index")
index = init_pinecone()
# ----------- 3. Embedding Model -----------
embeddings_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# ----------- 4. Context Retrieval with Tracing -----------
@mlflow.trace
def get_retrieved_context(query: str, top_k=3):
"""Retrieve context from Pinecone with performance tracing"""
with mlflow.start_span("embedding_generation"):
start_time = time.time()
query_embedding = embeddings_model.embed_query(query)
mlflow.log_metric("embedding_latency", time.time() - start_time)
with mlflow.start_span("pinecone_query"):
start_time = time.time()
results = index.query(
namespace="rag-ns",
vector=query_embedding,
top_k=top_k,
include_metadata=True
)
mlflow.log_metric("pinecone_latency", time.time() - start_time)
mlflow.log_metric("retrieved_chunks", len(results['matches']))
context_parts = [match['metadata']['text'] for match in results['matches']]
return "\n".join(context_parts)
# ----------- 5. LLM Chain Setup -----------
model = LitServeLLM(
endpoint_url="https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict"
)
prompt = PromptTemplate(
input_variables=["context", "question"],
template="""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
"""
)
llm_chain = LLMChain(llm=model, prompt=prompt)
# ----------- 6. RAG Pipeline with Full Tracing -----------
@mlflow.trace
def rag_pipeline(question):
"""End-to-end RAG pipeline with MLflow tracing"""
try:
# Start a new nested run for each query
with mlflow.start_run(run_name=f"Query-{datetime.now().strftime('%H%M%S')}", nested=True):
mlflow.log_param("user_question", question)
# Retrieve context
retrieved_context = get_retrieved_context(question)
mlflow.log_text(retrieved_context, "artifacts/retrieved_context.txt")
# Generate response
start_time = time.time()
response = llm_chain.invoke({
"context": retrieved_context,
"question": question
})["text"].strip()
# Clean response
if "Answer:" in response:
response = response.split("Answer:", 1)[-1].strip()
# Log metrics
mlflow.log_metric("response_latency", time.time() - start_time)
mlflow.log_metric("response_length", len(response))
mlflow.log_text(response, "artifacts/response.txt")
return response
except Exception as e:
mlflow.log_metric("pipeline_errors", 1)
error_info = {
"error": str(e),
"question": question,
"timestamp": datetime.now().isoformat()
}
mlflow.log_dict(error_info, "artifacts/pipeline_errors.json")
return f"Error: {str(e)}"
# ----------- 7. Gradio UI with Enhanced Tracking -----------
with gr.Blocks() as demo:
gr.Markdown("# 🛠️ Maintenance AI Assistant")
# Track additional UI metrics
usage_counter = gr.State(value=0)
session_start = gr.State(value=datetime.now().isoformat())
question_input = gr.Textbox(label="Ask your maintenance question")
answer_output = gr.Textbox(label="AI Response")
ask_button = gr.Button("Get Answer")
feedback = gr.Radio(["Helpful", "Not Helpful"], label="Was this response helpful?")
def track_usage(question, count, session_start, feedback=None):
"""Wrapper to track usage metrics with feedback"""
count += 1
# Start tracking context
with mlflow.start_run(run_name=f"User-Interaction-{count}", nested=True):
mlflow.log_param("question", question)
mlflow.log_param("session_start", session_start)
# Get response
response = rag_pipeline(question)
# Log feedback if provided
if feedback:
mlflow.log_param("user_feedback", feedback)
mlflow.log_metric("helpful_responses", 1 if feedback == "Helpful" else 0)
# Update metrics
mlflow.log_metric("total_queries", count)
return response, count, session_start
ask_button.click(
track_usage,
inputs=[question_input, usage_counter, session_start],
outputs=[answer_output, usage_counter, session_start]
)
feedback.change(
track_usage,
inputs=[question_input, usage_counter, session_start, feedback],
outputs=[answer_output, usage_counter, session_start]
)
if __name__ == "__main__":
# Log deployment information
with mlflow.start_run(run_name="Deployment-Info"):
mlflow.log_params({
"app_version": "1.0.0",
"deployment_platform": "Lightning AI",
"deployment_time": datetime.now().isoformat(),
"code_version": os.getenv("GIT_COMMIT", "dev")
})
# Start Gradio app
demo.launch()
'''
import os
import gradio as gr
import requests
import mlflow
import dagshub
from pinecone import Pinecone
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any
import time
from langchain_community.embeddings import HuggingFaceEmbeddings
from dotenv import load_dotenv
from datetime import datetime
# DeepEval imports
try:
from deepeval.test_case import LLMTestCase
from deepeval.metrics import AnswerRelevancyMetric, HallucinationMetric
from deepeval.metrics import BaseMetric
from deepeval.models.base_model import DeepEvalBaseLLM
except Exception:
raise
# Optional LangChain Google generative integration (Gemini)
try:
import google.generativeai as genai
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
except Exception:
ChatGoogleGenerativeAI = None
genai = None
# Load environment variables
load_dotenv()
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY", "")
MLFLOW_TRACKING_URI = os.environ.get("MLFLOW_TRACKING_URI", "http://localhost:5000")
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY", "")
LITSERVE_ENDPOINT = os.environ.get("LITSERVE_ENDPOINT", "https://8001-01k2h9d9mervcmgfn66ybkpwvq.cloudspaces.litng.ai/predict")
# DagsHub & MLflow Setup (guarded)
try:
dagshub.init(
repo_owner='prathamesh.khade20',
repo_name='Maintenance_AI_website',
mlflow=True
)
except Exception:
pass
mlflow.set_tracking_uri(MLFLOW_TRACKING_URI)
mlflow.set_experiment("Maintenance-RAG-Chatbot")
# ----------- App configuration logging -----------
with mlflow.start_run(run_name=f"App-Config-{datetime.now().strftime('%Y%m%d-%H%M%S')}") as setup_run:
mlflow.log_params({
"pinecone_index": "rag-granite-index",
"embedding_model": "all-MiniLM-L6-v2",
"namespace": "rag-ns",
"top_k": 3,
"llm_endpoint": LITSERVE_ENDPOINT
})
mlflow.log_text("""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
""", "artifacts/prompt_template.txt")
# ----------- 1. Custom LLM for LitServe endpoint (Lightning AI) -----------
class LitServeLLM(LLM):
endpoint_url: str
@mlflow.trace
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
payload = {"prompt": prompt}
with mlflow.start_span("lit_serve_request"):
start_time = time.time()
response = requests.post(self.endpoint_url, json=payload)
latency = time.time() - start_time
mlflow.log_metric("lit_serve_latency", latency)
if response.status_code == 200:
data = response.json()
mlflow.log_metric("response_tokens", len(data.get("response", "").split()))
return data.get("response", "").strip()
else:
mlflow.log_metric("request_errors", 1)
error_info = {
"status_code": response.status_code,
"error": response.text,
"timestamp": datetime.now().isoformat()
}
mlflow.log_dict(error_info, "artifacts/error_log.json")
raise ValueError(f"Request failed: {response.status_code}")
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"endpoint_url": self.endpoint_url}
@property
def _llm_type(self) -> str:
return "litserve_llm"
# ----------- 2. Pinecone Connection -----------
@mlflow.trace
def init_pinecone():
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=PINECONE_API_KEY)
return pc.Index("rag-granite-index")
try:
index = init_pinecone()
except Exception:
index = None
# ----------- 3. Embedding Model -----------
embeddings_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# ----------- 4. Context Retrieval with Tracing -----------
@mlflow.trace
def get_retrieved_context(query: str, top_k=3):
with mlflow.start_span("embedding_generation"):
start_time = time.time()
query_embedding = embeddings_model.embed_query(query)
mlflow.log_metric("embedding_latency", time.time() - start_time)
if index is None:
return ""
with mlflow.start_span("pinecone_query"):
start_time = time.time()
results = index.query(
namespace="rag-ns",
vector=query_embedding,
top_k=top_k,
include_metadata=True
)
mlflow.log_metric("pinecone_latency", time.time() - start_time)
mlflow.log_metric("retrieved_chunks", len(results['matches']))
context_parts = [match['metadata']['text'] for match in results['matches']]
return "
".join(context_parts)
with mlflow.start_span("pinecone_query"):
start_time = time.time()
results = index.query(
namespace="rag-ns",
vector=query_embedding,
top_k=top_k,
include_metadata=True
)
mlflow.log_metric("pinecone_latency", time.time() - start_time)
mlflow.log_metric("retrieved_chunks", len(results['matches']))
context_parts = [match['metadata']['text'] for match in results['matches']]
return "
".join(context_parts)
# ----------- 5. LLM Chain Setup (Lightning AI generator) -----------
model = LitServeLLM(endpoint_url=LITSERVE_ENDPOINT)
prompt = PromptTemplate(
input_variables=["context", "question"],
template="""
You are a smart assistant. Based on the provided context, answer the question in 1–2 lines only.
If the context has more details, summarize it concisely.
Context:
{context}
Question: {question}
Answer:
"""
)
llm_chain = LLMChain(llm=model, prompt=prompt)
# ----------- 6. RAG Pipeline with Full Tracing (uses Lightning AI) -----------
@mlflow.trace
def rag_pipeline(question):
try:
with mlflow.start_run(run_name=f"Query-{datetime.now().strftime('%H%M%S')}", nested=True):
mlflow.log_param("user_question", question)
retrieved_context = get_retrieved_context(question)
mlflow.log_text(retrieved_context, "artifacts/retrieved_context.txt")
start_time = time.time()
response_obj = llm_chain.invoke({
"context": retrieved_context,
"question": question
})
response = response_obj.get("text") if isinstance(response_obj, dict) else getattr(response_obj, "text", str(response_obj))
response = response.strip()
if "Answer:" in response:
response = response.split("Answer:", 1)[-1].strip()
mlflow.log_metric("response_latency", time.time() - start_time)
mlflow.log_metric("response_length", len(response))
mlflow.log_text(response, "artifacts/response.txt")
return response
except Exception as e:
mlflow.log_metric("pipeline_errors", 1)
error_info = {
"error": str(e),
"question": question,
"timestamp": datetime.now().isoformat()
}
mlflow.log_dict(error_info, "artifacts/pipeline_errors.json")
return f"Error: {str(e)}"
# ----------- 7. DeepEval Wrapper(s) and Metrics Integration (Gemini evaluation) -----------
class GoogleVertexAI(DeepEvalBaseLLM):
def __init__(self, model):
self.model = model
def load_model(self):
return self.model
def generate(self, prompt: str) -> str:
chat_model = self.load_model()
res = chat_model.invoke(prompt)
if hasattr(res, 'content'):
return res.content
if isinstance(res, dict):
return res.get('content') or res.get('text') or str(res)
return str(res)
async def a_generate(self, prompt: str) -> str:
chat_model = self.load_model()
res = await chat_model.ainvoke(prompt)
return getattr(res, 'content', str(res))
def get_model_name(self):
return "Vertex AI Model"
class LitServeWrapper(DeepEvalBaseLLM):
def __init__(self, lit_llm: LitServeLLM):
self.lit_llm = lit_llm
def load_model(self):
return self.lit_llm
def generate(self, prompt: str) -> str:
return self.lit_llm._call(prompt)
async def a_generate(self, prompt: str) -> str:
return self.generate(prompt)
def get_model_name(self):
return "LitServeModel"
# Custom metric that DOES NOT require expected_output: Length-based utility metric
class LengthMetric(BaseMetric):
def __init__(self, min_tokens: int = 1, max_tokens: int = 200):
self.min_tokens = min_tokens
self.max_tokens = max_tokens
self.score = 0.0
self.success = False
def measure(self, test_case: LLMTestCase):
text = (test_case.actual_output or "")
tokens = len(text.split())
mid = (self.min_tokens + self.max_tokens) / 2
dist = abs(tokens - mid)
max_dist = max(mid - self.min_tokens, self.max_tokens - mid)
self.score = max(0.0, 1.0 - (dist / max_dist))
self.success = (self.min_tokens <= tokens <= self.max_tokens)
return self.score
async def a_measure(self, test_case: LLMTestCase):
return self.measure(test_case)
def is_successful(self):
return self.success
@property
def name(self):
return "Length Metric"
# Helper to get eval model: GEMINI will be used as evaluator by default
def get_deepeval_model(choice: str = 'gemini'):
if choice == 'gemini' and ChatGoogleGenerativeAI is not None and GOOGLE_API_KEY:
try:
genai.configure(api_key=GOOGLE_API_KEY)
except Exception:
pass
chat_model = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_API_KEY)
return GoogleVertexAI(model=chat_model)
else:
# fallback to litserve wrapper if gemini isn't available
return LitServeWrapper(lit_llm=model)
# Function to run Deepeval tests and log to mlflow (only metrics that don't need expected_output)
@mlflow.trace
def run_deepeval_tests(test_cases: List[LLMTestCase], eval_model_choice: str = 'gemini'):
model_wrapper = get_deepeval_model(eval_model_choice)
# Only metrics that do not require expected output
answer_relevancy_metric = AnswerRelevancyMetric(threshold=0.5, model=model_wrapper)
hallucination_metric = HallucinationMetric(threshold=0.5, model=model_wrapper)
length_metric = LengthMetric(min_tokens=3, max_tokens=200)
results = []
with mlflow.start_run(run_name=f"DeepEval-{datetime.now().strftime('%H%M%S')}", nested=True):
for i, tc in enumerate(test_cases):
mlflow.log_param(f"tc_{i}_input", tc.input)
mlflow.log_param(f"tc_{i}_actual", tc.actual_output)
if tc.context:
mlflow.log_text("
".join(tc.context), f"artifacts/tc_{i}_context.txt")
# Measure metrics
answer_relevancy_metric.measure(tc)
hallucination_metric.measure(tc)
length_metric.measure(tc)
entry = {
"input": tc.input,
"actual_output": tc.actual_output,
"context": tc.context,
"answer_relevancy_score": answer_relevancy_metric.score,
"hallucination_score": hallucination_metric.score,
"length_score": length_metric.score
}
# Log metrics to mlflow
mlflow.log_metric(f"tc_{i}_answer_relevancy", answer_relevancy_metric.score)
mlflow.log_metric(f"tc_{i}_hallucination", hallucination_metric.score)
mlflow.log_metric(f"tc_{i}_length", length_metric.score)
results.append(entry)
return results
# ----------- 8. Gradio UI with Evaluation Tab (Auto-generate actual output from Lightning AI) -----------
with gr.Blocks() as demo:
gr.Markdown("# 🛠️ Maintenance AI Assistant + DeepEval (Lightning AI generator, Gemini evaluator)")
with gr.Tabs():
with gr.TabItem("Chat (RAG)"):
usage_counter = gr.State(value=0)
session_start = gr.State(value=datetime.now().isoformat())
question_input = gr.Textbox(label="Ask your maintenance question")
answer_output = gr.Textbox(label="AI Response")
ask_button = gr.Button("Get Answer")
feedback = gr.Radio(["Helpful", "Not Helpful"], label="Was this response helpful?")
def track_usage(question, count, session_start, feedback=None):
count += 1
with mlflow.start_run(run_name=f"User-Interaction-{count}", nested=True):
mlflow.log_param("question", question)
mlflow.log_param("session_start", session_start)
response = rag_pipeline(question)
if feedback:
mlflow.log_param("user_feedback", feedback)
mlflow.log_metric("helpful_responses", 1 if feedback == "Helpful" else 0)
mlflow.log_metric("total_queries", count)
return response, count, session_start
ask_button.click(
track_usage,
inputs=[question_input, usage_counter, session_start],
outputs=[answer_output, usage_counter, session_start]
)
feedback.change(
track_usage,
inputs=[question_input, usage_counter, session_start, feedback],
outputs=[answer_output, usage_counter, session_start]
)
with gr.TabItem("DeepEval — Model Tests"):
gr.Markdown("### Run DeepEval metrics (no expected output needed). Provide input; optionally auto-generate the model response (Lightning AI). Gemini will evaluate by default.")
tc_input = gr.Textbox(label="Test Input (prompt)")
tc_actual = gr.Textbox(label="Actual Output (paste model response or leave empty to auto-generate)")
tc_context = gr.Textbox(label="Context (optional)")
auto_generate = gr.Checkbox(label="Auto-generate actual output from RAG (Lightning AI)", value=True)
model_choice = gr.Radio(["gemini", "litserve"], value="gemini", label="Evaluation backend (Gemini recommended)")
run_button = gr.Button("Run DeepEval")
eval_output = gr.JSON(label="Evaluation Results")
def run_single_eval(inp, actual, context, autogen, eval_backend):
# If autogen is True, generate actual output via RAG pipeline (Lightning AI)
if autogen or (actual is None or actual.strip() == ""):
generated = rag_pipeline(inp)
actual_output = generated
else:
actual_output = actual
# Log that actual was autogenerated
with mlflow.start_run(run_name=f"DE-Run-{datetime.now().strftime('%H%M%S')}", nested=True):
mlflow.log_param("input", inp)
mlflow.log_param("autogenerated_actual", autogen)
if context:
mlflow.log_text(context, "artifacts/eval_context.txt")
tc = LLMTestCase(input=inp, actual_output=actual_output, expected_output=None, context=[context] if context else None)
results = run_deepeval_tests([tc], eval_model_choice=eval_backend)
return results
run_button.click(
run_single_eval,
inputs=[tc_input, tc_actual, tc_context, auto_generate, model_choice],
outputs=[eval_output]
)
if __name__ == "__main__":
with mlflow.start_run(run_name="Deployment-Info"):
mlflow.log_params({
"app_version": "1.3.0",
"deployment_platform": "Lightning AI / HuggingFace Space",
"deployment_time": datetime.now().isoformat(),
"code_version": os.getenv("GIT_COMMIT", "dev")
})
demo.launch()