File size: 8,132 Bytes
311297c 7c4bce0 311297c 65a3996 3cb80a8 cd0647b eec8fa4 beb1eae eec8fa4 e4926ee eec8fa4 e4926ee eec8fa4 e4926ee eec8fa4 2f825e9 eec8fa4 aaf25e9 311297c b72ec98 311297c ce38f58 db46cd6 311297c beb1eae 311297c 085f1f7 311297c cd0647b e85b015 cd0647b 73e785d cd0647b 73e785d 518b1fc cd0647b 311297c c81beab 311297c a193df0 311297c c81beab 311297c 3cb80a8 311297c cd0647b 311297c fe94209 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import os
from dotenv import load_dotenv
from llama_index.core.indices.vector_store.base import VectorStoreIndex
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.embeddings.fastembed import FastEmbedEmbedding
from llama_index.core import Settings
import qdrant_client
from llama_index.llms.gemini import Gemini
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.readers.web import FireCrawlWebReader
from fastapi.middleware.cors import CORSMiddleware
from llama_index.core.agent import ReActAgent
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.core.llms import ChatMessage
from composio_llamaindex import ComposioToolSet, App, Action
from llama_index.core.agent import FunctionCallingAgentWorker
from llama_index.core.llms import ChatMessage
from llama_index.llms.openai import OpenAI
from pathlib import Path
class AgentInput(BaseModel):
sheet_id: str
api_key: str
query: str
import nltk
import ssl
try:
_create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
pass
else:
ssl._create_default_https_context = _create_unverified_https_context
# Set the NLTK data path explicitly
nltk.data.path.append(os.environ["NLTK_DATA"])
# Download specific NLTK datasets
nltk.download('punkt', download_dir=os.environ["NLTK_DATA"])
load_dotenv()
from fastapi.middleware.httpsredirect import HTTPSRedirectMiddleware
app = FastAPI()
#app.add_middleware(HTTPSRedirectMiddleware)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Adjust this to your needs
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize session state equivalent
state = {
'setup_complete': False,
'documents': None,
'chat_history': [],
'index': None,
'url': "",
'collection_name': "",
}
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
os.environ["COMPOSIO_API_KEY"] = os.getenv("COMPOSIO_API_KEY")
# Setup functions
def embed_setup():
Settings.embed_model = FastEmbedEmbedding(model_name="BAAI/bge-small-en-v1.5")
Settings.llm = Gemini(temperature=0.1, model_name="models/gemini-1.5-pro")
@app.post("/sheets_query/")
async def process_query(input_data: AgentInput):
# Load environment variables
load_dotenv()
# Set up OpenAI LLM
#os.environ["OPENAI_API_KEY"] =
llm = OpenAI(model='gpt-4o', api_key=input_data.api_key)
# Set up ComposioToolSet
composio_toolset = ComposioToolSet(api_key=os.getenv("COMPOSIO_API_KEY"), output_dir=Path("./plots/"))
tools = composio_toolset.get_tools(apps=[App.GOOGLESHEETS, App.CODEINTERPRETER])
# Define prefix messages
prefix_messages = [
ChatMessage(
role="system",
content=(
"You are an AI assistant who is an expert at Google Sheets. "
"Use Google Sheets Tool and perform the necessary operations based on query, use code interpreter to plot graphs"
"return the plotted graph images in markdown format."
"create a sandbox and use the codeinterpreter."
)
)
]
# Create agent
agent = FunctionCallingAgentWorker(
tools=tools,
llm=llm,
prefix_messages=prefix_messages,
max_function_calls=10,
allow_parallel_tool_calls=False,
verbose=True
).as_agent()
try:
# Process the query
response = agent.chat(f"This is the Google Sheet ID: {input_data.sheet_id}. {input_data.query}")
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def qdrant_setup():
client = qdrant_client.QdrantClient(
os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY"),
)
return client
def llm_setup():
llm = Gemini(api_key=os.getenv("GOOGLE_API_KEY"), temperature=0.3, model_name="models/gemini-pro")
return llm
def ingest_documents(url):
firecrawl_reader = FireCrawlWebReader(
api_key=os.getenv("FIRECRAWL_API_KEY"),
mode="scrape",
)
documents = firecrawl_reader.load_data(url=url)
return documents
class SetupRequest(BaseModel):
url: str = ""
collection_name: str
class QueryRequest(BaseModel):
query: str
@app.post("/setup/")
async def setup(request: SetupRequest):
state['url'] = request.url
state['collection_name'] = request.collection_name
embed_setup()
client = qdrant_setup()
llm = llm_setup()
vector_store = QdrantVectorStore(client=client, collection_name=state['collection_name'])
if state['url']:
state['documents'] = ingest_documents(state['url'])
state['index'] = VectorStoreIndex.from_documents(state['documents'], vector_store=vector_store)
state['setup_complete'] = True
return {"message": f"Documents ingested from {state['url']} and query engine setup completed successfully!"}
else:
state['index'] = VectorStoreIndex.from_vector_store(vector_store=vector_store)
state['setup_complete'] = True
return {"message": f"Query engine setup completed successfully using existing collection: {state['collection_name']}"}
@app.post("/query/")
async def query(request: QueryRequest):
if not state['setup_complete']:
raise HTTPException(status_code=400, detail="Please complete the setup first")
memory = ChatMemoryBuffer.from_defaults(token_limit=4000)
chat_engine = state['index'].as_chat_engine(
chat_mode="context",
memory=memory,
system_prompt=(
"""You are an AI assistant for developers, specializing in technical documentation. You are also great at casual conversations.
Your task is to provide accurate, concise, and helpful responses based on the given documentation context.
Context information is below:
{context_str}
Always answer based on the information in the context and general knowledge and be precise
Given this context, please respond to the following user query:
{query_str}
Your response should:
Directly address the query using information from the context
Include relevant code examples or direct quotes if applicable
Mention specific sections or pages of the documentation
Highlight any best practices or potential pitfalls related to the query
After your response, suggest 3 follow-up questions based on the context that the user might find helpful for deeper understanding.
ALWAYS SUGGEST FOLLOW UP QUESTIONS
Your response:"""
),
)
response = chat_engine.chat(request.query)
state['chat_history'].append(("User", request.query))
state['chat_history'].append(("Assistant", str(response.response)))
return {"response": response.response}
@app.post("/agent-search/")
async def agent_search(request: QueryRequest):
code_tools=DuckDuckGoSearchToolSpec()
tool = code_tools.to_tool_list()
llm = Gemini(api_key=os.environ["GOOGLE_API_KEY"], model="models/gemini-1.5-pro")
prefix_messages = [
ChatMessage(
role="system",
content=(
"You are now a integration agent, and what ever you are requested, you will try to execute utilizing your toools."
),
)
]
agent = ReActAgent.from_tools(tool, llm=llm, verbose=True)
response = agent.chat(request.query)
state['chat_history'].append(("User", request.query))
state['chat_history'].append(("Assistant", str(response.response)))
return {"response": response.response}
@app.get("/chat-history/")
async def get_chat_history():
return {"chat_history": state['chat_history']}
@app.post("/clear-chat/")
async def clear_chat():
state['chat_history'] = []
return {"message": "Chat history cleared!"} |