Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update Leaderboard
Browse files- __pycache__/app.cpython-311.pyc +0 -0
- __pycache__/constants.cpython-311.pyc +0 -0
- app.py +230 -28
- constants.py +31 -0
- leaderboard.jsonl +0 -0
    	
        __pycache__/app.cpython-311.pyc
    ADDED
    
    | Binary file (19.4 kB). View file | 
|  | 
    	
        __pycache__/constants.cpython-311.pyc
    ADDED
    
    | Binary file (1.96 kB). View file | 
|  | 
    	
        app.py
    CHANGED
    
    | @@ -1,53 +1,255 @@ | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import pandas as pd
         | 
|  | |
|  | |
|  | |
| 3 |  | 
|  | |
| 4 |  | 
| 5 | 
            -
             | 
| 6 | 
            -
             | 
| 7 | 
            -
                 | 
| 8 | 
            -
                 | 
| 9 | 
            -
             | 
| 10 | 
            -
                 | 
| 11 | 
            -
                 | 
| 12 | 
            -
                ['**Fluent Language**', 24.4, 24.4, 24.4, 21.3, 23.2, 21.2, 21.4, 20.8, 23.2, 21.5, 22.1, "[[1]](https://arxiv.org/abs/2310.18xxx)"],
         | 
| 13 | 
            -
                ['**Citation Addition**', 25.5, 25.3, 25.3, 22.8, 24.2, 21.7, 22.3, 21.3, 23.5, 21.7, 22.9, "[[1]](https://arxiv.org/abs/2310.18xxx)"],
         | 
| 14 | 
            -
                ['**Quotes Addition**', 27.5, 27.6, 27.1, 24.4, 26.7, 24.6, 24.9, 23.2, 26.4, 24.1, 25.5, "[[1]](https://arxiv.org/abs/2310.18xxx)"],
         | 
| 15 | 
            -
                ['**Adding Statistics**', 25.8, 26.0, 25.5, 23.1, 26.1, 23.6, 24.5, 22.4, 26.1, 23.8, 24.8, "[[1]](https://arxiv.org/abs/2310.18xxx)"]
         | 
| 16 | 
            -
            ]
         | 
| 17 |  | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 20 |  | 
| 21 | 
            -
            # Create a DataFrame
         | 
| 22 | 
            -
            DATA_OVERALL = pd.DataFrame(data, columns=columns)
         | 
| 23 | 
            -
            DATA_OVERALL.sort_values(by=['WordPos Overall'], inplace=True, ascending=False)
         | 
| 24 |  | 
| 25 | 
             
            with gr.Blocks() as demo:
         | 
| 26 | 
            -
                 | 
| 27 | 
            -
                 | 
| 28 | 
            -
             | 
| 29 | 
            -
             | 
| 30 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 31 |  | 
| 32 | 
             
                with gr.Tabs():
         | 
| 33 |  | 
| 34 | 
            -
                    with gr.TabItem('Overall'):
         | 
| 35 |  | 
| 36 | 
             
                        with gr.Row():
         | 
| 37 | 
             
                            gr.Markdown('## Overall Leaderboard')
         | 
|  | |
| 38 | 
             
                        with gr.Row():
         | 
| 39 | 
             
                            data_overall = gr.components.Dataframe(
         | 
| 40 | 
            -
                                DATA_OVERALL,
         | 
| 41 | 
            -
                                datatype=["markdown"] + ["number"] * len(DATA_OVERALL.columns) + ['markdown'],
         | 
| 42 | 
             
                                type="pandas",
         | 
| 43 | 
             
                                wrap=True,
         | 
| 44 | 
             
                                interactive=False,
         | 
| 45 | 
             
                            )
         | 
|  | |
|  | |
| 46 | 
             
                        with gr.Row():
         | 
| 47 | 
            -
                             | 
| 48 | 
            -
             | 
| 49 | 
            -
             
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 50 |  | 
|  | |
| 51 |  | 
| 52 | 
             
            if __name__ == "__main__":
         | 
| 53 | 
             
                demo.launch()
         | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import pandas as pd
         | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
            import itertools
         | 
| 5 | 
            +
            from constants import metric_dict, tags, columns
         | 
| 6 |  | 
| 7 | 
            +
            # Download from github and load the data
         | 
| 8 |  | 
| 9 | 
            +
            # TODO: Download every x hours
         | 
| 10 | 
            +
            def download_data(url = "https://github.com/Pranjal2041/GEO/GEO-Bench/leaderboard/leaderboard.jsonl", path = "leaderboard.jsonl"):
         | 
| 11 | 
            +
                ret_code = os.system(f'wget {url} -O {path}_tmp')
         | 
| 12 | 
            +
                if ret_code != 0:
         | 
| 13 | 
            +
                    return ret_code
         | 
| 14 | 
            +
                os.system(f'mv {path}_tmp {path}')
         | 
| 15 | 
            +
                return 0
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 16 |  | 
| 17 | 
            +
            def search_leaderboard(df, queries):
         | 
| 18 | 
            +
                # Assuming DATA_OVERALL is the DataFrame containing the leaderboard data
         | 
| 19 | 
            +
                # filtered_data = df[df["Method"].str.contains(query, case=False, na=False)]
         | 
| 20 | 
            +
                temp_pds = []
         | 
| 21 | 
            +
                for query in queries:
         | 
| 22 | 
            +
                    temp_pds.append(df[df["Method"].str.contains(query, case=False, na=False)])
         | 
| 23 | 
            +
                return pd.concat(temp_pds).drop_duplicates()
         | 
| 24 | 
            +
             
         | 
| 25 | 
            +
            def search_tags_leaderboard(df, tag_blocks, queries):
         | 
| 26 | 
            +
                return search_leaderboard(filter_tags(df, tag_blocks), queries)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            def filter_tags(df, tag_blocks):
         | 
| 29 | 
            +
                def fuzzy_in(x, y_set):
         | 
| 30 | 
            +
                    return any(x in z for z in y_set)
         | 
| 31 | 
            +
                all_tags_sets = [set(tag.lower() for tag in tag_block) for tag_block in tag_blocks]
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                filtered_rows = [i for i, tags in enumerate(complete_dt['tags']) if all('any' in tag_set or any(fuzzy_in(tag.lower(), tag_set) for tag in tags) for tag_set in all_tags_sets)]
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                return prepare_complete_dt(df.iloc[filtered_rows])
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            def prepare_complete_dt(complete_dt):
         | 
| 38 | 
            +
                data = []
         | 
| 39 | 
            +
                DATA_OVERALL = complete_dt.copy()
         | 
| 40 | 
            +
                for Method in set(complete_dt['Method']):
         | 
| 41 | 
            +
                    data.append([])
         | 
| 42 | 
            +
                    data[-1].append(Method)
         | 
| 43 | 
            +
                    for metric in metric_dict:
         | 
| 44 | 
            +
                        metric_val = metric_dict[metric]
         | 
| 45 | 
            +
                        data[-1].append(complete_dt[complete_dt['Method'] == Method][metric_val].mean())
         | 
| 46 | 
            +
                    data[-1].append(complete_dt[complete_dt['Method'] == Method]['source'].iloc[0])
         | 
| 47 | 
            +
                    DATA_OVERALL = pd.DataFrame(data, columns=columns)
         | 
| 48 | 
            +
                try:
         | 
| 49 | 
            +
                    DATA_OVERALL.sort_values(by=['WordPos Overall'], inplace=True, ascending=False)
         | 
| 50 | 
            +
                except: ...
         | 
| 51 | 
            +
                return DATA_OVERALL
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            def format_df_for_leaderboard(df):
         | 
| 54 | 
            +
                # The source column needs to be embedded directly into the Method column using appropriate markdown.
         | 
| 55 | 
            +
                df['Method'] = df[['source', 'Method']].apply(lambda x: f'<a target="_blank" style="text-decoration: underline; color: #3571d7;" href="{x[0]}">{x[1]}</a>', axis=1)
         | 
| 56 | 
            +
                # Convert all float metrics to 1 decimal
         | 
| 57 | 
            +
                df_copy = df.copy()
         | 
| 58 | 
            +
                for metric in metric_dict:
         | 
| 59 | 
            +
                    df_copy[metric] = df_copy[metric].apply(lambda x: float(f'{(100*x):.1f}'))
         | 
| 60 | 
            +
                # drop the source column
         | 
| 61 | 
            +
                return df_copy.drop(columns=['source'])
         | 
| 62 | 
            +
             | 
| 63 | 
            +
             | 
| 64 | 
            +
            ret_code = 0
         | 
| 65 | 
            +
            # ret_code = download_data()
         | 
| 66 | 
            +
            if ret_code != 0:
         | 
| 67 | 
            +
                print("Leaderboard Download failed")
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            complete_dt = pd.read_json('leaderboard.jsonl', lines=True, orient='records')
         | 
| 70 | 
            +
            DATA_OVERALL = prepare_complete_dt(complete_dt)
         | 
| 71 |  | 
|  | |
|  | |
|  | |
| 72 |  | 
| 73 | 
             
            with gr.Blocks() as demo:
         | 
| 74 | 
            +
                
         | 
| 75 | 
            +
                demo_content = """
         | 
| 76 | 
            +
            <style>
         | 
| 77 | 
            +
              .badge-container {
         | 
| 78 | 
            +
                text-align: center;
         | 
| 79 | 
            +
                display: flex;
         | 
| 80 | 
            +
                justify-content: center;
         | 
| 81 | 
            +
              }
         | 
| 82 | 
            +
              .badge {
         | 
| 83 | 
            +
                margin: 1px;
         | 
| 84 | 
            +
              }
         | 
| 85 | 
            +
            </style>
         | 
| 86 | 
            +
            <h1 style="text-align: center;">GEO-Bench Leaderboard</h1>
         | 
| 87 | 
            +
            <div class="badge-container">
         | 
| 88 | 
            +
                <a href="https://pranjal2041.github.io/geo/" class="badge">
         | 
| 89 | 
            +
                    <img src="https://img.shields.io/website?down_message=down&style=for-the-badge&up_message=up&url=https%3A%2F%2Fpranjal2041.github.io/geo/" alt="Website">
         | 
| 90 | 
            +
                </a>
         | 
| 91 | 
            +
                <a href="https://arxiv.org/abs/2310.18xxx" class="badge">
         | 
| 92 | 
            +
                    <img src="https://img.shields.io/badge/arXiv-2310.18xxx-red.svg?style=for-the-badge" alt="Arxiv Paper">
         | 
| 93 | 
            +
                </a>
         | 
| 94 | 
            +
                <a href="https://huggingface.co/datasets/Pranjal2041/geo-bench" class="badge">
         | 
| 95 | 
            +
                    <img src="https://img.shields.io/badge/Dataset-GEO-%2DBENCH-orange?style=for-the-badge" alt="Dataset">
         | 
| 96 | 
            +
                </a>
         | 
| 97 | 
            +
                <a href="https://github.com/Pranjal2041/GEO" class="badge">
         | 
| 98 | 
            +
                    <img src="https://img.shields.io/badge/Github-Code-green?style=for-the-badge" alt="Code">
         | 
| 99 | 
            +
                </a>
         | 
| 100 | 
            +
            </div>
         | 
| 101 | 
            +
            <p>
         | 
| 102 | 
            +
                - For benchmarking content optimization Methods for Generative Engines.<br>
         | 
| 103 | 
            +
                - GEO-Bench evaluates Methods for optimizing website content to improve visibility in generative engine responses. Benchmark contains 10K queries across 9 datasets covering diverse domains and intents.<br>
         | 
| 104 | 
            +
                - Refer to GEO paper for more <a href="https://arxiv.org/abs/2310.18xxx">details</a>
         | 
| 105 | 
            +
            </p>
         | 
| 106 | 
            +
            """
         | 
| 107 | 
            +
             | 
| 108 | 
            +
             | 
| 109 | 
            +
                gr.HTML(demo_content)
         | 
| 110 | 
            +
             | 
| 111 | 
            +
             | 
| 112 | 
            +
             | 
| 113 |  | 
| 114 | 
             
                with gr.Tabs():
         | 
| 115 |  | 
| 116 | 
            +
                    with gr.TabItem('Overall ๐'):
         | 
| 117 |  | 
| 118 | 
             
                        with gr.Row():
         | 
| 119 | 
             
                            gr.Markdown('## Overall Leaderboard')
         | 
| 120 | 
            +
                        
         | 
| 121 | 
             
                        with gr.Row():
         | 
| 122 | 
             
                            data_overall = gr.components.Dataframe(
         | 
| 123 | 
            +
                                format_df_for_leaderboard(DATA_OVERALL),
         | 
| 124 | 
            +
                                datatype=["markdown"] + ["number"] * (len(DATA_OVERALL.columns) - 2) + ['markdown'],
         | 
| 125 | 
             
                                type="pandas",
         | 
| 126 | 
             
                                wrap=True,
         | 
| 127 | 
             
                                interactive=False,
         | 
| 128 | 
             
                            )
         | 
| 129 | 
            +
                            # data_overall.
         | 
| 130 | 
            +
                    
         | 
| 131 | 
             
                        with gr.Row():
         | 
| 132 | 
            +
                            # search_bar = gr.Textbox(type="text", label="Search for a Method:")
         | 
| 133 | 
            +
                            search_bar = gr.Textbox(
         | 
| 134 | 
            +
                                placeholder=" ๐ Search for your Method (separate multiple queries with `,`) and press ENTER...",
         | 
| 135 | 
            +
                                show_label=False,
         | 
| 136 | 
            +
                                elem_id="search-bar",
         | 
| 137 | 
            +
                            )
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                            def search_button_click(query):
         | 
| 140 | 
            +
                                filtered_data = search_leaderboard(DATA_OVERALL, [x.strip() for x in query.split(',')])
         | 
| 141 | 
            +
                                return format_df_for_leaderboard(filtered_data)
         | 
| 142 | 
            +
                            
         | 
| 143 | 
            +
                    with gr.TabItem('Tag-Wise Results ๐'):
         | 
| 144 | 
            +
                        with gr.Row():
         | 
| 145 | 
            +
                            gr.Markdown(f"""
         | 
| 146 | 
            +
                            ## Tag-Wise Results
         | 
| 147 | 
            +
                            - The following table shows the results for each tag.
         | 
| 148 | 
            +
                            - The tags are sorted in the order of their performance.
         | 
| 149 | 
            +
                            - The table is sorted in the order of the overall score.
         | 
| 150 | 
            +
                            """)
         | 
| 151 | 
            +
                        with gr.Row():
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                            search_bar_tag = gr.Textbox(
         | 
| 154 | 
            +
                                placeholder=" ๐ Search for your Method (separate multiple queries with `,`) and press ENTER...",
         | 
| 155 | 
            +
                                show_label=False,
         | 
| 156 | 
            +
                                elem_id="search-bar",
         | 
| 157 | 
            +
                            )
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                            def search_button_click(query):
         | 
| 160 | 
            +
                                filtered_data = search_leaderboard(DATA_OVERALL, [x.strip() for x in query.split(',')])
         | 
| 161 | 
            +
                                return format_df_for_leaderboard(filtered_data)
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                        with gr.Row():
         | 
| 164 | 
            +
                            boxes = dict()
         | 
| 165 | 
            +
                            with gr.Column(min_width=320):
         | 
| 166 | 
            +
                                for tag in list(tags.keys())[:3]:
         | 
| 167 | 
            +
                                    with gr.Box(elem_id="box-filter"):
         | 
| 168 | 
            +
                                        boxes[tag] = gr.CheckboxGroup(
         | 
| 169 | 
            +
                                            label=tag,
         | 
| 170 | 
            +
                                            choices=tags[tag],
         | 
| 171 | 
            +
                                            value=tags[tag],
         | 
| 172 | 
            +
                                            interactive=True,
         | 
| 173 | 
            +
                                            elem_id=f"filter-{tag}",
         | 
| 174 | 
            +
                                        )
         | 
| 175 | 
            +
                            with gr.Column(min_width=320):
         | 
| 176 | 
            +
                                for tag in list(tags.keys())[4:]:
         | 
| 177 | 
            +
                                    with gr.Box(elem_id="box-filter"):
         | 
| 178 | 
            +
                                        boxes[tag] = gr.CheckboxGroup(
         | 
| 179 | 
            +
                                            label=tag,
         | 
| 180 | 
            +
                                            choices=tags[tag],
         | 
| 181 | 
            +
                                            value=tags[tag],
         | 
| 182 | 
            +
                                            interactive=True,
         | 
| 183 | 
            +
                                            elem_id=f"filter-{tag}",
         | 
| 184 | 
            +
                                        )
         | 
| 185 | 
            +
                        with gr.Row():
         | 
| 186 | 
            +
                            tag = list(tags.keys())[3]
         | 
| 187 | 
            +
                            with gr.Box(elem_id="box-filter"):
         | 
| 188 | 
            +
                                boxes[tag] = gr.CheckboxGroup(
         | 
| 189 | 
            +
                                    label=tag,
         | 
| 190 | 
            +
                                    choices=tags[tag],
         | 
| 191 | 
            +
                                    value=tags[tag],
         | 
| 192 | 
            +
                                    interactive=True,
         | 
| 193 | 
            +
                                    elem_id=f"filter-{tag}",
         | 
| 194 | 
            +
                                )
         | 
| 195 | 
            +
                        with gr.Row():
         | 
| 196 | 
            +
                            data_tag_wise = gr.components.Dataframe(
         | 
| 197 | 
            +
                                format_df_for_leaderboard(DATA_OVERALL),
         | 
| 198 | 
            +
                                datatype=["markdown"] + ["number"] * (len(DATA_OVERALL.columns) - 2) + ['markdown'],
         | 
| 199 | 
            +
                                type="pandas",
         | 
| 200 | 
            +
                                wrap=True,
         | 
| 201 | 
            +
                                interactive=False,
         | 
| 202 | 
            +
                            )
         | 
| 203 | 
            +
                        def filter_tag_click(*boxes):
         | 
| 204 | 
            +
                            return format_df_for_leaderboard(filter_tags(complete_dt, list(boxes)))
         | 
| 205 | 
            +
                        def search_tag_click(query, *boxes):
         | 
| 206 | 
            +
                            return format_df_for_leaderboard(search_tags_leaderboard(complete_dt, list(boxes), [x.strip() for x in query.split(',')]))
         | 
| 207 | 
            +
                        for box in boxes:
         | 
| 208 | 
            +
                            boxes[box].change(fn=filter_tag_click, inputs=list(boxes.values()), outputs=data_tag_wise)
         | 
| 209 | 
            +
                            search_bar_tag.submit(fn=search_tag_click, inputs=[search_bar_tag] + list(boxes.values()), outputs=data_tag_wise)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    with gr.TabItem('About GEO-bench ๐'):
         | 
| 212 | 
            +
                        with gr.Row():
         | 
| 213 | 
            +
                            gr.Markdown(f"""
         | 
| 214 | 
            +
                            ## About GEO-bench
         | 
| 215 | 
            +
                            - GEO-bench is a benchmarking platform for content optimization Methods for generative engines.
         | 
| 216 | 
            +
                            - It is a part of the work released under [GEO](https://arxiv.org/abs/2310.18xxx)
         | 
| 217 | 
            +
                            - The benchmark comprises of 9 datasets, 7 of which were publicly available, while 2 have been released by us.
         | 
| 218 | 
            +
                            - Dataset can be downloaded from [here](huggingface.co/datasets/pranjal2041/geo-bench)""")
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                        with gr.Row():
         | 
| 221 | 
            +
             | 
| 222 | 
            +
                            # Goal of benchmarking content optimization for generative engines
         | 
| 223 | 
            +
                            # Contains 10K carefully curated queries
         | 
| 224 | 
            +
                            # Queries are diverse and cover many domains/intents
         | 
| 225 | 
            +
                            # Annotated with tags/dimensions like domain, difficulty, etc.
         | 
| 226 | 
            +
                            # Above list in HTML format
         | 
| 227 | 
            +
                            gr.HTML(f"""
         | 
| 228 | 
            +
                            <h3>Key-Highlights of GEO-bench</h3>
         | 
| 229 | 
            +
                            <ul>
         | 
| 230 | 
            +
                                <li>Goal of benchmarking content optimization for generative engines</li>
         | 
| 231 | 
            +
                                <li>Contains 10K carefully curated queries</li>
         | 
| 232 | 
            +
                                <li>Queries are diverse and cover many domains/intents</li>
         | 
| 233 | 
            +
                                <li>Annotated with tags/dimensions like domain, difficulty, etc.</li>
         | 
| 234 | 
            +
                            </ul>
         | 
| 235 | 
            +
                            """)
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                            # Benchmark Link:
         | 
| 238 | 
            +
                            # gr.Markdown(f"""### Benchmark Link: [GEO-bench](huggingface.co/datasets/pranjal2041/geo-bench)""")
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                            # Info about tags and other statistics
         | 
| 241 | 
            +
                                        
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                    with gr.TabItem('Submit ๐'):
         | 
| 244 | 
            +
                        with gr.Row():
         | 
| 245 | 
            +
                            gr.Markdown(f"""
         | 
| 246 | 
            +
                            ## Submit
         | 
| 247 | 
            +
                            - To submit your Method, please check [here](github.com/Pranjal2041/GEO/GEO-Bench/leaderboard/Readme.md)""")
         | 
| 248 | 
            +
             | 
| 249 | 
            +
             | 
| 250 | 
            +
                            # Create a form to submit, the response should be sent to a google form
         | 
| 251 |  | 
| 252 | 
            +
                    search_bar.submit(fn=search_button_click, inputs=search_bar, outputs=data_overall)
         | 
| 253 |  | 
| 254 | 
             
            if __name__ == "__main__":
         | 
| 255 | 
             
                demo.launch()
         | 
    	
        constants.py
    ADDED
    
    | @@ -0,0 +1,31 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # metrics = ['relevance_detailed', 'uniqueness_detailed', 'subjcount_detailed', 'follow_detailed', 'simple_wordpos', 'simple_pos', 'influence_detailed', 'subjective_score', 'diversity_detailed', 'simple_word', 'subjpos_detailed']
         | 
| 2 | 
            +
            columns = ['Method', 'Word', 'Position', 'WordPos Overall', 'Rel.', 'Infl.', 'Unique', 'Div.', 'FollowUp', 'Pos.', 'Count', 'Subjective Average', 'source']
         | 
| 3 | 
            +
            metric_dict = {
         | 
| 4 | 
            +
                'Word': 'simple_word',
         | 
| 5 | 
            +
                'Position': 'simple_pos',
         | 
| 6 | 
            +
                'WordPos Overall': 'simple_wordpos',
         | 
| 7 | 
            +
                'Rel.': 'relevance_detailed',
         | 
| 8 | 
            +
                'Infl.': 'influence_detailed',
         | 
| 9 | 
            +
                'Unique': 'uniqueness_detailed',
         | 
| 10 | 
            +
                'Div.': 'diversity_detailed',
         | 
| 11 | 
            +
                'FollowUp': 'follow_detailed',  
         | 
| 12 | 
            +
                'Pos.': 'subjpos_detailed',
         | 
| 13 | 
            +
                'Count': 'subjcount_detailed',
         | 
| 14 | 
            +
                'Subjective Average': 'subjective_score',
         | 
| 15 | 
            +
            }
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            tags = {
         | 
| 18 | 
            +
                "Difficulty Level": ["Simple", "Intermediate", "Complex", "Multi-faceted", "Open-ended", 'any'],
         | 
| 19 | 
            +
                "Nature of Query": ["Informational", "Navigational", "Transactional", "Debate", "Opinion", "Comparison", "Instructional", "Descriptive", "Predictive", 'any'],
         | 
| 20 | 
            +
                "Sensitivity": ["Sensitive", "Non-sensitive",'any'],
         | 
| 21 | 
            +
                "Genre": [
         | 
| 22 | 
            +
                    "๐ญ Arts and Entertainment", "๐ Autos and Vehicles", "๐ Beauty and Fitness", "๐ Books and Literature", "๐ข Business and Industrial",
         | 
| 23 | 
            +
                    "๐ป Computers and Electronics", "๐ฐ Finance", "๐ Food and Drink", "๐ฎ Games", "๐ฅ Health", "๐จ Hobbies and Leisure", "๐ก Home and Garden",
         | 
| 24 | 
            +
                    "๐ Internet and Telecom", "๐ Jobs and Education", "๐๏ธ Law and Government", "๐ฐ News", "๐ฌ Online Communities", "๐ซ People and Society",
         | 
| 25 | 
            +
                    "๐พ Pets and Animals", "๐ก Real Estate", "๐ Reference", "๐ฌ Science", "๐ Shopping", "โฝ Sports", "โ๏ธ Travel",'any'
         | 
| 26 | 
            +
                ],
         | 
| 27 | 
            +
                "Specific Topics": ["Physics", "Chemistry", "Biology", "Mathematics", "Computer Science", "Economics", 'any'],
         | 
| 28 | 
            +
                "User Intent": ["๐ Research", "๐ฐ Purchase", "๐ Entertainment", "๐ Learning", "๐ Comparison", 'any'],
         | 
| 29 | 
            +
                "Answer Type": ["Fact", "Opinion", "List", "Explanation", "Guide", "Comparison", "Prediction", 'any'],
         | 
| 30 | 
            +
            }
         | 
| 31 | 
            +
             | 
    	
        leaderboard.jsonl
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  |