Spaces:
Build error
Build error
# coding: utf-8 | |
__author__ = 'ZFTurbo: https://kaggle.com/zfturbo' | |
import warnings | |
import numpy as np | |
from numba import jit | |
import time | |
def bb_intersection_over_union(A, B) -> float: | |
xA = max(A[0], B[0]) | |
yA = max(A[1], B[1]) | |
xB = min(A[2], B[2]) | |
yB = min(A[3], B[3]) | |
# compute the area of intersection rectangle | |
interArea = max(0, xB - xA) * max(0, yB - yA) | |
if interArea == 0: | |
return 0.0 | |
# compute the area of both the prediction and ground-truth rectangles | |
boxAArea = (A[2] - A[0]) * (A[3] - A[1]) | |
boxBArea = (B[2] - B[0]) * (B[3] - B[1]) | |
iou = interArea / float(boxAArea + boxBArea - interArea) | |
return iou | |
def prefilter_boxes(boxes, scores, labels, weights, thr): | |
# Create dict with boxes stored by its label | |
new_boxes = dict() | |
for t in range(len(boxes)): | |
if len(boxes[t]) != len(scores[t]): | |
print('Error. Length of boxes arrays not equal to length of scores array: {} != {}'.format(len(boxes[t]), len(scores[t]))) | |
exit() | |
if len(boxes[t]) != len(labels[t]): | |
print('Error. Length of boxes arrays not equal to length of labels array: {} != {}'.format(len(boxes[t]), len(labels[t]))) | |
exit() | |
for j in range(len(boxes[t])): | |
score = scores[t][j] | |
if score < thr: | |
continue | |
label = int(labels[t][j]) | |
box_part = boxes[t][j] | |
x1 = float(box_part[0]) | |
y1 = float(box_part[1]) | |
x2 = float(box_part[2]) | |
y2 = float(box_part[3]) | |
# Box data checks | |
if x2 < x1: | |
warnings.warn('X2 < X1 value in box. Swap them.') | |
x1, x2 = x2, x1 | |
if y2 < y1: | |
warnings.warn('Y2 < Y1 value in box. Swap them.') | |
y1, y2 = y2, y1 | |
if x1 < 0: | |
warnings.warn('X1 < 0 in box. Set it to 0.') | |
x1 = 0 | |
if x1 > 1: | |
warnings.warn('X1 > 1 in box. Set it to 1. Check that you normalize boxes in [0, 1] range.') | |
x1 = 1 | |
if x2 < 0: | |
warnings.warn('X2 < 0 in box. Set it to 0.') | |
x2 = 0 | |
if x2 > 1: | |
warnings.warn('X2 > 1 in box. Set it to 1. Check that you normalize boxes in [0, 1] range.') | |
x2 = 1 | |
if y1 < 0: | |
warnings.warn('Y1 < 0 in box. Set it to 0.') | |
y1 = 0 | |
if y1 > 1: | |
warnings.warn('Y1 > 1 in box. Set it to 1. Check that you normalize boxes in [0, 1] range.') | |
y1 = 1 | |
if y2 < 0: | |
warnings.warn('Y2 < 0 in box. Set it to 0.') | |
y2 = 0 | |
if y2 > 1: | |
warnings.warn('Y2 > 1 in box. Set it to 1. Check that you normalize boxes in [0, 1] range.') | |
y2 = 1 | |
if (x2 - x1) * (y2 - y1) == 0.0: | |
warnings.warn("Zero area box skipped: {}.".format(box_part)) | |
continue | |
# [label, score, weight, model index, x1, y1, x2, y2] | |
b = [int(label), float(score) * weights[t], weights[t], t, x1, y1, x2, y2] | |
if label not in new_boxes: | |
new_boxes[label] = [] | |
new_boxes[label].append(b) | |
# Sort each list in dict by score and transform it to numpy array | |
for k in new_boxes: | |
current_boxes = np.array(new_boxes[k]) | |
new_boxes[k] = current_boxes[current_boxes[:, 1].argsort()[::-1]] | |
return new_boxes | |
def get_weighted_box(boxes, conf_type='avg'): | |
""" | |
Create weighted box for set of boxes | |
:param boxes: set of boxes to fuse | |
:param conf_type: type of confidence one of 'avg' or 'max' | |
:return: weighted box (label, score, weight, x1, y1, x2, y2) | |
""" | |
box = np.zeros(8, dtype=np.float32) | |
conf = 0 | |
conf_list = [] | |
w = 0 | |
for b in boxes: | |
box[4:] += (b[1] * b[4:]) | |
conf += b[1] | |
conf_list.append(b[1]) | |
w += b[2] | |
box[0] = boxes[0][0] | |
if conf_type == 'avg': | |
box[1] = conf / len(boxes) | |
elif conf_type == 'max': | |
box[1] = np.array(conf_list).max() | |
elif conf_type in ['box_and_model_avg', 'absent_model_aware_avg']: | |
box[1] = conf / len(boxes) | |
box[2] = w | |
box[3] = -1 # model index field is retained for consistensy but is not used. | |
box[4:] /= conf | |
return box | |
def find_matching_box(boxes_list, new_box, match_iou): | |
best_iou = match_iou | |
best_index = -1 | |
for i in range(len(boxes_list)): | |
box = boxes_list[i] | |
if box[0] != new_box[0]: | |
continue | |
iou = bb_intersection_over_union(box[4:], new_box[4:]) | |
if iou > best_iou: | |
best_index = i | |
best_iou = iou | |
return best_index, best_iou | |
def find_matching_box_quickly(boxes_list, new_box, match_iou): | |
""" Reimplementation of find_matching_box with numpy instead of loops. Gives significant speed up for larger arrays | |
(~100x). This was previously the bottleneck since the function is called for every entry in the array. | |
""" | |
def bb_iou_array(boxes, new_box): | |
# bb interesection over union | |
xA = np.maximum(boxes[:, 0], new_box[0]) | |
yA = np.maximum(boxes[:, 1], new_box[1]) | |
xB = np.minimum(boxes[:, 2], new_box[2]) | |
yB = np.minimum(boxes[:, 3], new_box[3]) | |
interArea = np.maximum(xB - xA, 0) * np.maximum(yB - yA, 0) | |
# compute the area of both the prediction and ground-truth rectangles | |
boxAArea = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) | |
boxBArea = (new_box[2] - new_box[0]) * (new_box[3] - new_box[1]) | |
iou = interArea / (boxAArea + boxBArea - interArea) | |
return iou | |
if boxes_list.shape[0] == 0: | |
return -1, match_iou | |
# boxes = np.array(boxes_list) | |
boxes = boxes_list | |
ious = bb_iou_array(boxes[:, 4:], new_box[4:]) | |
ious[boxes[:, 0] != new_box[0]] = -1 | |
best_idx = np.argmax(ious) | |
best_iou = ious[best_idx] | |
if best_iou <= match_iou: | |
best_iou = match_iou | |
best_idx = -1 | |
return best_idx, best_iou | |
def weighted_boxes_fusion(boxes_list, scores_list, labels_list, weights=None, iou_thr=0.55, skip_box_thr=0.0, conf_type='avg', allows_overflow=False): | |
''' | |
:param boxes_list: list of boxes predictions from each model, each box is 4 numbers. | |
It has 3 dimensions (models_number, model_preds, 4) | |
Order of boxes: x1, y1, x2, y2. We expect float normalized coordinates [0; 1] | |
:param scores_list: list of scores for each model | |
:param labels_list: list of labels for each model | |
:param weights: list of weights for each model. Default: None, which means weight == 1 for each model | |
:param iou_thr: IoU value for boxes to be a match | |
:param skip_box_thr: exclude boxes with score lower than this variable | |
:param conf_type: how to calculate confidence in weighted boxes. 'avg': average value, 'max': maximum value, 'box_and_model_avg': box and model wise hybrid weighted average, 'absent_model_aware_avg': weighted average that takes into account the absent model. | |
:param allows_overflow: false if we want confidence score not exceed 1.0 | |
:return: boxes: boxes coordinates (Order of boxes: x1, y1, x2, y2). | |
:return: scores: confidence scores | |
:return: labels: boxes labels | |
''' | |
if weights is None: | |
weights = np.ones(len(boxes_list)) | |
if len(weights) != len(boxes_list): | |
print('Warning: incorrect number of weights {}. Must be: {}. Set weights equal to 1.'.format(len(weights), len(boxes_list))) | |
weights = np.ones(len(boxes_list)) | |
weights = np.array(weights) | |
if conf_type not in ['avg', 'max', 'box_and_model_avg', 'absent_model_aware_avg']: | |
print('Unknown conf_type: {}. Must be "avg", "max" or "box_and_model_avg", or "absent_model_aware_avg"'.format(conf_type)) | |
exit() | |
filtered_boxes = prefilter_boxes(boxes_list, scores_list, labels_list, weights, skip_box_thr) | |
if len(filtered_boxes) == 0: | |
return np.zeros((0, 4)), np.zeros((0,)), np.zeros((0,)) | |
overall_boxes = [] | |
for label in filtered_boxes: | |
boxes = filtered_boxes[label] | |
new_boxes = [] | |
weighted_boxes = np.empty((0,8)) | |
# Clusterize boxes | |
for j in range(0, len(boxes)): | |
index, best_iou = find_matching_box_quickly(weighted_boxes, boxes[j], iou_thr) | |
if index != -1: | |
new_boxes[index].append(boxes[j]) | |
weighted_boxes[index] = get_weighted_box(new_boxes[index], conf_type) | |
else: | |
new_boxes.append([boxes[j].copy()]) | |
weighted_boxes = np.vstack((weighted_boxes, boxes[j].copy())) | |
# Rescale confidence based on number of models and boxes | |
for i in range(len(new_boxes)): | |
clustered_boxes = np.array(new_boxes[i]) | |
if conf_type == 'box_and_model_avg': | |
# weighted average for boxes | |
weighted_boxes[i, 1] = weighted_boxes[i, 1] * len(clustered_boxes) / weighted_boxes[i, 2] | |
# identify unique model index by model index column | |
_, idx = np.unique(clustered_boxes[:, 3], return_index=True) | |
# rescale by unique model weights | |
weighted_boxes[i, 1] = weighted_boxes[i, 1] * clustered_boxes[idx, 2].sum() / weights.sum() | |
elif conf_type == 'absent_model_aware_avg': | |
# get unique model index in the cluster | |
models = np.unique(clustered_boxes[:, 3]).astype(int) | |
# create a mask to get unused model weights | |
mask = np.ones(len(weights), dtype=bool) | |
mask[models] = False | |
# absent model aware weighted average | |
weighted_boxes[i, 1] = weighted_boxes[i, 1] * len(clustered_boxes) / (weighted_boxes[i, 2] + weights[mask].sum()) | |
elif conf_type == 'max': | |
weighted_boxes[i, 1] = weighted_boxes[i, 1] / weights.max() | |
elif not allows_overflow: | |
weighted_boxes[i, 1] = weighted_boxes[i, 1] * min(len(weights), len(clustered_boxes)) / weights.sum() | |
else: | |
weighted_boxes[i, 1] = weighted_boxes[i, 1] * len(clustered_boxes) / weights.sum() | |
overall_boxes.append(weighted_boxes) | |
overall_boxes = np.concatenate(overall_boxes, axis=0) | |
overall_boxes = overall_boxes[overall_boxes[:, 1].argsort()[::-1]] | |
boxes = overall_boxes[:, 4:] | |
scores = overall_boxes[:, 1] | |
labels = overall_boxes[:, 0] | |
return boxes, scores, labels | |