Spaces:
Running
Running
Update inference_2.py
Browse files- inference_2.py +74 -69
inference_2.py
CHANGED
|
@@ -1,28 +1,24 @@
|
|
| 1 |
import os
|
| 2 |
import cv2
|
|
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
from onnx2pytorch import ConvertModel
|
| 6 |
from models.TMC import ETMC
|
| 7 |
from models import image
|
| 8 |
-
import onnx
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
# Load ONNX -> PyTorch
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
img_model = ConvertModel(onnx_model)
|
| 16 |
-
img_model.eval()
|
| 17 |
|
| 18 |
-
# -------------------
|
| 19 |
-
# Set random seed for reproducibility
|
| 20 |
-
# -------------------
|
| 21 |
torch.manual_seed(42)
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
# Audio model
|
| 25 |
-
#
|
| 26 |
audio_args = {
|
| 27 |
'nb_samp': 64600,
|
| 28 |
'first_conv': 1024,
|
|
@@ -32,14 +28,17 @@ audio_args = {
|
|
| 32 |
'nb_fc_node': 1024,
|
| 33 |
'gru_node': 1024,
|
| 34 |
'nb_gru_layer': 3,
|
| 35 |
-
'nb_classes': 2
|
|
|
|
| 36 |
}
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
# Load Audio Model
|
| 40 |
-
#
|
| 41 |
def load_audio_model():
|
| 42 |
-
spec_model = image.RawNet(
|
| 43 |
ckpt = torch.load('checkpoints/model.pth', map_location='cpu')
|
| 44 |
spec_model.load_state_dict(ckpt['spec_encoder'], strict=True)
|
| 45 |
spec_model.eval()
|
|
@@ -47,76 +46,82 @@ def load_audio_model():
|
|
| 47 |
|
| 48 |
spec_model = load_audio_model()
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
#
|
| 52 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
def preprocess_img(face):
|
| 54 |
face = face / 255.0
|
| 55 |
face = cv2.resize(face, (256, 256))
|
| 56 |
-
|
| 57 |
-
return
|
| 58 |
|
| 59 |
def preprocess_audio(audio_file):
|
| 60 |
-
|
| 61 |
-
return
|
| 62 |
|
| 63 |
def preprocess_video(input_video, n_frames=3):
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
sample = np.linspace(0,
|
| 67 |
-
|
| 68 |
frames = []
|
| 69 |
-
for
|
| 70 |
-
success =
|
| 71 |
-
if
|
| 72 |
-
success, frame =
|
| 73 |
if not success:
|
| 74 |
continue
|
| 75 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 76 |
frame = preprocess_img(frame)
|
| 77 |
frames.append(frame)
|
| 78 |
-
|
| 79 |
return frames
|
| 80 |
|
| 81 |
-
#
|
| 82 |
-
#
|
| 83 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
def deepfakes_image_predict(input_image):
|
| 85 |
face = preprocess_img(input_image)
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
if preds[0] > 0.5:
|
| 90 |
-
score = round(preds[0] * 100, 3)
|
| 91 |
-
return f"The image is REAL. Confidence score: {score}%"
|
| 92 |
else:
|
| 93 |
-
|
| 94 |
-
|
| 95 |
|
| 96 |
def deepfakes_video_predict(input_video):
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
real_mean = np.mean(real_scores)
|
| 107 |
-
fake_mean = np.mean(fake_scores)
|
| 108 |
-
|
| 109 |
if real_mean > 0.5:
|
| 110 |
-
|
| 111 |
-
else:
|
| 112 |
-
return f"The video is FAKE. Confidence score: {round(fake_mean*100, 3)}%"
|
| 113 |
-
|
| 114 |
-
def deepfakes_spec_predict(input_audio):
|
| 115 |
-
audio_tensor = preprocess_audio(input_audio)
|
| 116 |
-
with torch.no_grad():
|
| 117 |
-
preds = spec_model.forward(audio_tensor).cpu().numpy().squeeze()
|
| 118 |
-
|
| 119 |
-
if preds[0] > 0.5:
|
| 120 |
-
return "The audio is REAL."
|
| 121 |
else:
|
| 122 |
-
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import cv2
|
| 3 |
+
import onnx
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
| 6 |
+
from types import SimpleNamespace
|
| 7 |
from onnx2pytorch import ConvertModel
|
| 8 |
from models.TMC import ETMC
|
| 9 |
from models import image
|
|
|
|
| 10 |
|
| 11 |
+
# -----------------------------
|
| 12 |
+
# Load ONNX -> PyTorch safely
|
| 13 |
+
# -----------------------------
|
| 14 |
+
onnx_model = onnx.load('checkpoints/efficientnet.onnx')
|
| 15 |
+
pytorch_model = ConvertModel(onnx_model, strict=False)
|
|
|
|
|
|
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
torch.manual_seed(42)
|
| 18 |
|
| 19 |
+
# -----------------------------
|
| 20 |
+
# Audio model arguments
|
| 21 |
+
# -----------------------------
|
| 22 |
audio_args = {
|
| 23 |
'nb_samp': 64600,
|
| 24 |
'first_conv': 1024,
|
|
|
|
| 28 |
'nb_fc_node': 1024,
|
| 29 |
'gru_node': 1024,
|
| 30 |
'nb_gru_layer': 3,
|
| 31 |
+
'nb_classes': 2,
|
| 32 |
+
'device': 'cpu'
|
| 33 |
}
|
| 34 |
|
| 35 |
+
audio_args_obj = SimpleNamespace(**audio_args)
|
| 36 |
+
|
| 37 |
+
# -----------------------------
|
| 38 |
# Load Audio Model
|
| 39 |
+
# -----------------------------
|
| 40 |
def load_audio_model():
|
| 41 |
+
spec_model = image.RawNet(audio_args_obj)
|
| 42 |
ckpt = torch.load('checkpoints/model.pth', map_location='cpu')
|
| 43 |
spec_model.load_state_dict(ckpt['spec_encoder'], strict=True)
|
| 44 |
spec_model.eval()
|
|
|
|
| 46 |
|
| 47 |
spec_model = load_audio_model()
|
| 48 |
|
| 49 |
+
# -----------------------------
|
| 50 |
+
# Load Image Model
|
| 51 |
+
# -----------------------------
|
| 52 |
+
def load_image_model():
|
| 53 |
+
rgb_encoder = pytorch_model
|
| 54 |
+
ckpt = torch.load('checkpoints/model.pth', map_location='cpu')
|
| 55 |
+
rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict=True)
|
| 56 |
+
rgb_encoder.eval()
|
| 57 |
+
return rgb_encoder
|
| 58 |
+
|
| 59 |
+
img_model = load_image_model()
|
| 60 |
+
|
| 61 |
+
# -----------------------------
|
| 62 |
+
# Preprocessing functions
|
| 63 |
+
# -----------------------------
|
| 64 |
def preprocess_img(face):
|
| 65 |
face = face / 255.0
|
| 66 |
face = cv2.resize(face, (256, 256))
|
| 67 |
+
face_pt = torch.unsqueeze(torch.Tensor(face), dim=0)
|
| 68 |
+
return face_pt
|
| 69 |
|
| 70 |
def preprocess_audio(audio_file):
|
| 71 |
+
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim=0)
|
| 72 |
+
return audio_pt
|
| 73 |
|
| 74 |
def preprocess_video(input_video, n_frames=3):
|
| 75 |
+
v_cap = cv2.VideoCapture(input_video)
|
| 76 |
+
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 77 |
+
sample = np.linspace(0, v_len-1, n_frames).astype(int)
|
|
|
|
| 78 |
frames = []
|
| 79 |
+
for j in range(v_len):
|
| 80 |
+
success = v_cap.grab()
|
| 81 |
+
if j in sample:
|
| 82 |
+
success, frame = v_cap.retrieve()
|
| 83 |
if not success:
|
| 84 |
continue
|
| 85 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 86 |
frame = preprocess_img(frame)
|
| 87 |
frames.append(frame)
|
| 88 |
+
v_cap.release()
|
| 89 |
return frames
|
| 90 |
|
| 91 |
+
# -----------------------------
|
| 92 |
+
# Inference functions
|
| 93 |
+
# -----------------------------
|
| 94 |
+
def deepfakes_spec_predict(input_audio):
|
| 95 |
+
audio = preprocess_audio(input_audio)
|
| 96 |
+
spec_grads = spec_model.forward(audio)
|
| 97 |
+
spec_grads_np = np.exp(spec_grads.cpu().detach().numpy().squeeze())
|
| 98 |
+
max_value = np.argmax(spec_grads_np)
|
| 99 |
+
if max_value > 0.5:
|
| 100 |
+
text2 = f"The audio is REAL."
|
| 101 |
+
else:
|
| 102 |
+
text2 = f"The audio is FAKE."
|
| 103 |
+
return text2
|
| 104 |
+
|
| 105 |
def deepfakes_image_predict(input_image):
|
| 106 |
face = preprocess_img(input_image)
|
| 107 |
+
img_grads = img_model.forward(face).cpu().detach().numpy().squeeze()
|
| 108 |
+
if img_grads[0] > 0.5:
|
| 109 |
+
text2 = f"The image is REAL. Confidence: {img_grads[0]*100:.3f}%"
|
|
|
|
|
|
|
|
|
|
| 110 |
else:
|
| 111 |
+
text2 = f"The image is FAKE. Confidence: {img_grads[1]*100:.3f}%"
|
| 112 |
+
return text2
|
| 113 |
|
| 114 |
def deepfakes_video_predict(input_video):
|
| 115 |
+
video_frames = preprocess_video(input_video)
|
| 116 |
+
real_list, fake_list = [], []
|
| 117 |
+
for face in video_frames:
|
| 118 |
+
img_grads = img_model.forward(face).cpu().detach().numpy().squeeze()
|
| 119 |
+
real_list.append(img_grads[0])
|
| 120 |
+
fake_list.append(img_grads[1])
|
| 121 |
+
real_mean = np.mean(real_list)
|
| 122 |
+
fake_mean = np.mean(fake_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
if real_mean > 0.5:
|
| 124 |
+
text2 = f"The video is REAL. Confidence: {real_mean*100:.3f}%"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
else:
|
| 126 |
+
text2 = f"The video is FAKE. Confidence: {fake_mean*100:.3f}%"
|
| 127 |
+
return text2
|