Spaces:
Running
Running
Update inference_2.py
Browse files- inference_2.py +167 -63
inference_2.py
CHANGED
|
@@ -1,15 +1,23 @@
|
|
| 1 |
import os
|
| 2 |
import cv2
|
|
|
|
| 3 |
import torch
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
| 6 |
from onnx2pytorch import ConvertModel
|
| 7 |
-
from models import image # Your RawNet audio model
|
| 8 |
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
| 10 |
torch.manual_seed(42)
|
| 11 |
|
| 12 |
-
|
|
|
|
| 13 |
audio_args = {
|
| 14 |
'nb_samp': 64600,
|
| 15 |
'first_conv': 1024,
|
|
@@ -19,48 +27,155 @@ audio_args = {
|
|
| 19 |
'nb_fc_node': 1024,
|
| 20 |
'gru_node': 1024,
|
| 21 |
'nb_gru_layer': 3,
|
| 22 |
-
'nb_classes': 2
|
| 23 |
-
'device': 'cpu',
|
| 24 |
-
'pretrained_audio_encoder': False
|
| 25 |
}
|
| 26 |
|
| 27 |
-
# Convert audio_args dict to a namespace object
|
| 28 |
-
from types import SimpleNamespace
|
| 29 |
-
audio_args_obj = SimpleNamespace(**audio_args)
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
# Load Audio model
|
| 36 |
-
spec_model = image.RawNet(audio_args_obj)
|
| 37 |
|
| 38 |
-
# Ensure models are in eval mode
|
| 39 |
-
img_model.eval()
|
| 40 |
-
spec_model.eval()
|
| 41 |
-
|
| 42 |
-
# -------------------------
|
| 43 |
-
# Preprocessing functions
|
| 44 |
-
# -------------------------
|
| 45 |
def preprocess_img(face):
|
| 46 |
-
face = face / 255
|
| 47 |
face = cv2.resize(face, (256, 256))
|
| 48 |
-
|
| 49 |
-
|
|
|
|
| 50 |
|
| 51 |
def preprocess_audio(audio_file):
|
| 52 |
-
|
| 53 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
def preprocess_video(input_video, n_frames=3):
|
| 56 |
v_cap = cv2.VideoCapture(input_video)
|
| 57 |
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 58 |
-
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
|
| 59 |
-
frames = []
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
for j in range(v_len):
|
| 62 |
success = v_cap.grab()
|
| 63 |
if j in sample:
|
|
|
|
| 64 |
success, frame = v_cap.retrieve()
|
| 65 |
if not success:
|
| 66 |
continue
|
|
@@ -70,43 +185,32 @@ def preprocess_video(input_video, n_frames=3):
|
|
| 70 |
v_cap.release()
|
| 71 |
return frames
|
| 72 |
|
| 73 |
-
# -------------------------
|
| 74 |
-
# Prediction functions
|
| 75 |
-
# -------------------------
|
| 76 |
-
def deepfakes_spec_predict(input_audio):
|
| 77 |
-
audio_tensor = preprocess_audio(input_audio)
|
| 78 |
-
spec_grads = spec_model.forward(audio_tensor)
|
| 79 |
-
spec_grads_np = np.squeeze(spec_grads.cpu().detach().numpy())
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def deepfakes_image_predict(input_image):
|
| 87 |
-
face_tensor = preprocess_img(input_image)
|
| 88 |
-
img_grads = img_model.forward(face_tensor)
|
| 89 |
-
img_grads_np = np.squeeze(img_grads.cpu().detach().numpy())
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
else:
|
| 94 |
-
return f"The image is FAKE. Confidence score: {round(img_grads_np[1]*100,2)}%"
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
img_grads_np = np.squeeze(img_grads.cpu().detach().numpy())
|
| 103 |
-
real_list.append(img_grads_np[0])
|
| 104 |
-
fake_list.append(img_grads_np[1])
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
|
|
|
| 108 |
|
| 109 |
-
if real_mean > 0.5:
|
| 110 |
-
return f"The video is REAL. Confidence: {round(real_mean*100,2)}%"
|
| 111 |
else:
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import cv2
|
| 3 |
+
import onnx
|
| 4 |
import torch
|
| 5 |
+
import argparse
|
| 6 |
import numpy as np
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from models.TMC import ETMC
|
| 9 |
+
from models import image
|
| 10 |
+
|
| 11 |
from onnx2pytorch import ConvertModel
|
|
|
|
| 12 |
|
| 13 |
+
onnx_model = onnx.load('checkpoints/efficientnet.onnx')
|
| 14 |
+
pytorch_model = ConvertModel(onnx_model)
|
| 15 |
+
|
| 16 |
+
#Set random seed for reproducibility.
|
| 17 |
torch.manual_seed(42)
|
| 18 |
|
| 19 |
+
|
| 20 |
+
# Define the audio_args dictionary
|
| 21 |
audio_args = {
|
| 22 |
'nb_samp': 64600,
|
| 23 |
'first_conv': 1024,
|
|
|
|
| 27 |
'nb_fc_node': 1024,
|
| 28 |
'gru_node': 1024,
|
| 29 |
'nb_gru_layer': 3,
|
| 30 |
+
'nb_classes': 2
|
|
|
|
|
|
|
| 31 |
}
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
def get_args(parser):
|
| 35 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
| 36 |
+
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
| 37 |
+
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
| 38 |
+
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
| 39 |
+
parser.add_argument("--dropout", type=float, default=0.2)
|
| 40 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
| 41 |
+
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
| 42 |
+
parser.add_argument("--hidden_sz", type=int, default=768)
|
| 43 |
+
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
| 44 |
+
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
| 45 |
+
parser.add_argument("--include_bn", type=int, default=True)
|
| 46 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 47 |
+
parser.add_argument("--lr_factor", type=float, default=0.3)
|
| 48 |
+
parser.add_argument("--lr_patience", type=int, default=10)
|
| 49 |
+
parser.add_argument("--max_epochs", type=int, default=500)
|
| 50 |
+
parser.add_argument("--n_workers", type=int, default=12)
|
| 51 |
+
parser.add_argument("--name", type=str, default="MMDF")
|
| 52 |
+
parser.add_argument("--num_image_embeds", type=int, default=1)
|
| 53 |
+
parser.add_argument("--patience", type=int, default=20)
|
| 54 |
+
parser.add_argument("--savedir", type=str, default="./savepath/")
|
| 55 |
+
parser.add_argument("--seed", type=int, default=1)
|
| 56 |
+
parser.add_argument("--n_classes", type=int, default=2)
|
| 57 |
+
parser.add_argument("--annealing_epoch", type=int, default=10)
|
| 58 |
+
parser.add_argument("--device", type=str, default='cpu')
|
| 59 |
+
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
| 60 |
+
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
|
| 61 |
+
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
| 62 |
+
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
|
| 63 |
+
parser.add_argument("--augment_dataset", type = bool, default = True)
|
| 64 |
+
|
| 65 |
+
for key, value in audio_args.items():
|
| 66 |
+
parser.add_argument(f"--{key}", type=type(value), default=value)
|
| 67 |
+
|
| 68 |
+
def model_summary(args):
|
| 69 |
+
'''Prints the model summary.'''
|
| 70 |
+
model = ETMC(args)
|
| 71 |
+
|
| 72 |
+
for name, layer in model.named_modules():
|
| 73 |
+
print(name, layer)
|
| 74 |
+
|
| 75 |
+
def load_multimodal_model(args):
|
| 76 |
+
'''Load multimodal model'''
|
| 77 |
+
model = ETMC(args)
|
| 78 |
+
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
| 79 |
+
model.load_state_dict(ckpt, strict = True)
|
| 80 |
+
model.eval()
|
| 81 |
+
return model
|
| 82 |
+
|
| 83 |
+
def load_img_modality_model(args):
|
| 84 |
+
'''Loads image modality model.'''
|
| 85 |
+
rgb_encoder = pytorch_model
|
| 86 |
+
|
| 87 |
+
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
| 88 |
+
rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True)
|
| 89 |
+
rgb_encoder.eval()
|
| 90 |
+
return rgb_encoder
|
| 91 |
+
|
| 92 |
+
def load_spec_modality_model(args):
|
| 93 |
+
spec_encoder = image.RawNet(args)
|
| 94 |
+
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
| 95 |
+
spec_encoder.load_state_dict(ckpt['spec_encoder'], strict = True)
|
| 96 |
+
spec_encoder.eval()
|
| 97 |
+
return spec_encoder
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
#Load models.
|
| 101 |
+
parser = argparse.ArgumentParser(description="Inference models")
|
| 102 |
+
get_args(parser)
|
| 103 |
+
args, remaining_args = parser.parse_known_args()
|
| 104 |
+
assert remaining_args == [], remaining_args
|
| 105 |
+
|
| 106 |
+
spec_model = load_spec_modality_model(args)
|
| 107 |
+
|
| 108 |
+
img_model = load_img_modality_model(args)
|
| 109 |
|
|
|
|
|
|
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
def preprocess_img(face):
|
| 112 |
+
face = face / 255
|
| 113 |
face = cv2.resize(face, (256, 256))
|
| 114 |
+
# face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)
|
| 115 |
+
face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
|
| 116 |
+
return face_pt
|
| 117 |
|
| 118 |
def preprocess_audio(audio_file):
|
| 119 |
+
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
|
| 120 |
+
return audio_pt
|
| 121 |
+
|
| 122 |
+
def deepfakes_spec_predict(input_audio):
|
| 123 |
+
x, _ = input_audio
|
| 124 |
+
audio = preprocess_audio(x)
|
| 125 |
+
spec_grads = spec_model.forward(audio)
|
| 126 |
+
spec_grads_inv = np.exp(spec_grads.cpu().detach().numpy().squeeze())
|
| 127 |
+
|
| 128 |
+
# multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
|
| 129 |
+
|
| 130 |
+
# out = nn.Softmax()(multimodal_grads)
|
| 131 |
+
# max = torch.argmax(out, dim = -1) #Index of the max value in the tensor.
|
| 132 |
+
# max_value = out[max] #Actual value of the tensor.
|
| 133 |
+
max_value = np.argmax(spec_grads_inv)
|
| 134 |
+
|
| 135 |
+
if max_value > 0.5:
|
| 136 |
+
preds = round(100 - (max_value*100), 3)
|
| 137 |
+
text2 = f"The audio is REAL."
|
| 138 |
+
|
| 139 |
+
else:
|
| 140 |
+
preds = round(max_value*100, 3)
|
| 141 |
+
text2 = f"The audio is FAKE."
|
| 142 |
+
|
| 143 |
+
return text2
|
| 144 |
+
|
| 145 |
+
def deepfakes_image_predict(input_image):
|
| 146 |
+
face = preprocess_img(input_image)
|
| 147 |
+
print(f"Face shape is: {face.shape}")
|
| 148 |
+
img_grads = img_model.forward(face)
|
| 149 |
+
img_grads = img_grads.cpu().detach().numpy()
|
| 150 |
+
img_grads_np = np.squeeze(img_grads)
|
| 151 |
+
|
| 152 |
+
if img_grads_np[0] > 0.5:
|
| 153 |
+
preds = round(img_grads_np[0] * 100, 3)
|
| 154 |
+
text2 = f"The image is REAL. \nConfidence score is: {preds}"
|
| 155 |
+
|
| 156 |
+
else:
|
| 157 |
+
preds = round(img_grads_np[1] * 100, 3)
|
| 158 |
+
text2 = f"The image is FAKE. \nConfidence score is: {preds}"
|
| 159 |
+
|
| 160 |
+
return text2
|
| 161 |
+
|
| 162 |
|
| 163 |
+
def preprocess_video(input_video, n_frames = 3):
|
| 164 |
v_cap = cv2.VideoCapture(input_video)
|
| 165 |
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
| 166 |
|
| 167 |
+
# Pick 'n_frames' evenly spaced frames to sample
|
| 168 |
+
if n_frames is None:
|
| 169 |
+
sample = np.arange(0, v_len)
|
| 170 |
+
else:
|
| 171 |
+
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
|
| 172 |
+
|
| 173 |
+
#Loop through frames.
|
| 174 |
+
frames = []
|
| 175 |
for j in range(v_len):
|
| 176 |
success = v_cap.grab()
|
| 177 |
if j in sample:
|
| 178 |
+
# Load frame
|
| 179 |
success, frame = v_cap.retrieve()
|
| 180 |
if not success:
|
| 181 |
continue
|
|
|
|
| 185 |
v_cap.release()
|
| 186 |
return frames
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
+
def deepfakes_video_predict(input_video):
|
| 190 |
+
'''Perform inference on a video.'''
|
| 191 |
+
video_frames = preprocess_video(input_video)
|
| 192 |
+
real_faces_list = []
|
| 193 |
+
fake_faces_list = []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
+
for face in video_frames:
|
| 196 |
+
# face = preprocess_img(face)
|
|
|
|
|
|
|
| 197 |
|
| 198 |
+
img_grads = img_model.forward(face)
|
| 199 |
+
img_grads = img_grads.cpu().detach().numpy()
|
| 200 |
+
img_grads_np = np.squeeze(img_grads)
|
| 201 |
+
real_faces_list.append(img_grads_np[0])
|
| 202 |
+
fake_faces_list.append(img_grads_np[1])
|
| 203 |
|
| 204 |
+
real_faces_mean = np.mean(real_faces_list)
|
| 205 |
+
fake_faces_mean = np.mean(fake_faces_list)
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
+
if real_faces_mean > 0.5:
|
| 208 |
+
preds = round(real_faces_mean * 100, 3)
|
| 209 |
+
text2 = f"The video is REAL. \nConfidence score is: {preds}%"
|
| 210 |
|
|
|
|
|
|
|
| 211 |
else:
|
| 212 |
+
preds = round(fake_faces_mean * 100, 3)
|
| 213 |
+
text2 = f"The video is FAKE. \nConfidence score is: {preds}%"
|
| 214 |
+
|
| 215 |
+
return text2
|
| 216 |
+
|