Spaces:
Running
Running
| import os | |
| import cv2 | |
| import onnx | |
| import torch | |
| import argparse | |
| import numpy as np | |
| import torch.nn as nn | |
| from models.TMC import ETMC | |
| from models import image | |
| from onnx2pytorch import ConvertModel | |
| onnx_model = onnx.load('checkpoints/efficientnet.onnx') | |
| pytorch_model = ConvertModel(onnx_model) | |
| #Set random seed for reproducibility. | |
| torch.manual_seed(42) | |
| # Define the audio_args dictionary | |
| audio_args = { | |
| 'nb_samp': 64600, | |
| 'first_conv': 1024, | |
| 'in_channels': 1, | |
| 'filts': [20, [20, 20], [20, 128], [128, 128]], | |
| 'blocks': [2, 4], | |
| 'nb_fc_node': 1024, | |
| 'gru_node': 1024, | |
| 'nb_gru_layer': 3, | |
| 'nb_classes': 2 | |
| } | |
| def get_args(parser): | |
| parser.add_argument("--batch_size", type=int, default=8) | |
| parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*") | |
| parser.add_argument("--LOAD_SIZE", type=int, default=256) | |
| parser.add_argument("--FINE_SIZE", type=int, default=224) | |
| parser.add_argument("--dropout", type=float, default=0.2) | |
| parser.add_argument("--gradient_accumulation_steps", type=int, default=1) | |
| parser.add_argument("--hidden", nargs="*", type=int, default=[]) | |
| parser.add_argument("--hidden_sz", type=int, default=768) | |
| parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"]) | |
| parser.add_argument("--img_hidden_sz", type=int, default=1024) | |
| parser.add_argument("--include_bn", type=int, default=True) | |
| parser.add_argument("--lr", type=float, default=1e-4) | |
| parser.add_argument("--lr_factor", type=float, default=0.3) | |
| parser.add_argument("--lr_patience", type=int, default=10) | |
| parser.add_argument("--max_epochs", type=int, default=500) | |
| parser.add_argument("--n_workers", type=int, default=12) | |
| parser.add_argument("--name", type=str, default="MMDF") | |
| parser.add_argument("--num_image_embeds", type=int, default=1) | |
| parser.add_argument("--patience", type=int, default=20) | |
| parser.add_argument("--savedir", type=str, default="./savepath/") | |
| parser.add_argument("--seed", type=int, default=1) | |
| parser.add_argument("--n_classes", type=int, default=2) | |
| parser.add_argument("--annealing_epoch", type=int, default=10) | |
| parser.add_argument("--device", type=str, default='cpu') | |
| parser.add_argument("--pretrained_image_encoder", type=bool, default = False) | |
| parser.add_argument("--freeze_image_encoder", type=bool, default = False) | |
| parser.add_argument("--pretrained_audio_encoder", type = bool, default=False) | |
| parser.add_argument("--freeze_audio_encoder", type = bool, default = False) | |
| parser.add_argument("--augment_dataset", type = bool, default = True) | |
| for key, value in audio_args.items(): | |
| parser.add_argument(f"--{key}", type=type(value), default=value) | |
| def model_summary(args): | |
| '''Prints the model summary.''' | |
| model = ETMC(args) | |
| for name, layer in model.named_modules(): | |
| print(name, layer) | |
| def load_multimodal_model(args): | |
| '''Load multimodal model''' | |
| model = ETMC(args) | |
| ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu')) | |
| model.load_state_dict(ckpt, strict = True) | |
| model.eval() | |
| return model | |
| def load_img_modality_model(args): | |
| '''Loads image modality model.''' | |
| rgb_encoder = pytorch_model | |
| ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu')) | |
| rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True) | |
| rgb_encoder.eval() | |
| return rgb_encoder | |
| def load_spec_modality_model(args): | |
| spec_encoder = image.RawNet(args) | |
| ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu')) | |
| spec_encoder.load_state_dict(ckpt['spec_encoder'], strict = True) | |
| spec_encoder.eval() | |
| return spec_encoder | |
| #Load models. | |
| parser = argparse.ArgumentParser(description="Inference models") | |
| get_args(parser) | |
| args, remaining_args = parser.parse_known_args() | |
| assert remaining_args == [], remaining_args | |
| spec_model = load_spec_modality_model(args) | |
| img_model = load_img_modality_model(args) | |
| def preprocess_img(face): | |
| face = face / 255 | |
| face = cv2.resize(face, (256, 256)) | |
| # face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H) | |
| face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0) | |
| return face_pt | |
| def preprocess_audio(audio_file): | |
| audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0) | |
| return audio_pt | |
| def deepfakes_spec_predict(input_audio): | |
| x, _ = input_audio | |
| audio = preprocess_audio(x) | |
| spec_grads = spec_model.forward(audio) | |
| spec_grads_inv = np.exp(spec_grads.cpu().detach().numpy().squeeze()) | |
| # multimodal_grads = multimodal.spec_depth[0].forward(spec_grads) | |
| # out = nn.Softmax()(multimodal_grads) | |
| # max = torch.argmax(out, dim = -1) #Index of the max value in the tensor. | |
| # max_value = out[max] #Actual value of the tensor. | |
| max_value = np.argmax(spec_grads_inv) | |
| if max_value > 0.5: | |
| preds = round(100 - (max_value*100), 3) | |
| text2 = f"The audio is REAL." | |
| else: | |
| preds = round(max_value*100, 3) | |
| text2 = f"The audio is FAKE." | |
| return text2 | |
| def deepfakes_image_predict(input_image): | |
| face = preprocess_img(input_image) | |
| print(f"Face shape is: {face.shape}") | |
| img_grads = img_model.forward(face) | |
| img_grads = img_grads.cpu().detach().numpy() | |
| img_grads_np = np.squeeze(img_grads) | |
| if img_grads_np[0] > 0.5: | |
| preds = round(img_grads_np[0] * 100, 3) | |
| text2 = f"The image is REAL. \nConfidence score is: {preds}" | |
| else: | |
| preds = round(img_grads_np[1] * 100, 3) | |
| text2 = f"The image is FAKE. \nConfidence score is: {preds}" | |
| return text2 | |
| def preprocess_video(input_video, n_frames = 3): | |
| v_cap = cv2.VideoCapture(input_video) | |
| v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| # Pick 'n_frames' evenly spaced frames to sample | |
| if n_frames is None: | |
| sample = np.arange(0, v_len) | |
| else: | |
| sample = np.linspace(0, v_len - 1, n_frames).astype(int) | |
| #Loop through frames. | |
| frames = [] | |
| for j in range(v_len): | |
| success = v_cap.grab() | |
| if j in sample: | |
| # Load frame | |
| success, frame = v_cap.retrieve() | |
| if not success: | |
| continue | |
| frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| frame = preprocess_img(frame) | |
| frames.append(frame) | |
| v_cap.release() | |
| return frames | |
| def deepfakes_video_predict(input_video): | |
| '''Perform inference on a video.''' | |
| video_frames = preprocess_video(input_video) | |
| real_faces_list = [] | |
| fake_faces_list = [] | |
| for face in video_frames: | |
| # face = preprocess_img(face) | |
| img_grads = img_model.forward(face) | |
| img_grads = img_grads.cpu().detach().numpy() | |
| img_grads_np = np.squeeze(img_grads) | |
| real_faces_list.append(img_grads_np[0]) | |
| fake_faces_list.append(img_grads_np[1]) | |
| real_faces_mean = np.mean(real_faces_list) | |
| fake_faces_mean = np.mean(fake_faces_list) | |
| if real_faces_mean > 0.5: | |
| preds = round(real_faces_mean * 100, 3) | |
| text2 = f"The video is REAL. \nConfidence score is: {preds}%" | |
| else: | |
| preds = round(fake_faces_mean * 100, 3) | |
| text2 = f"The video is FAKE. \nConfidence score is: {preds}%" | |
| return text2 | |