PraneshJs commited on
Commit
fff6782
·
verified ·
1 Parent(s): 18fabed

Added files to hf space

Browse files
Files changed (3) hide show
  1. app.py +48 -0
  2. mnist_model.h5 +3 -0
  3. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import cv2
4
+ from PIL import Image
5
+ import tensorflow as tf
6
+
7
+ # Load the trained model
8
+ model = tf.keras.models.load_model('mnist_model.h5')
9
+
10
+ def cnn_predict_digit(image):
11
+ # Handle Gradio Sketchpad dictionary input
12
+ if isinstance(image, dict) and 'composite' in image:
13
+ image = image['composite']
14
+
15
+ # Convert to grayscale if RGB
16
+ if image.ndim == 3 and image.shape[2] == 3:
17
+ image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
18
+
19
+ # Invert colors (white background → black background)
20
+ image = 255 - image
21
+
22
+ # Resize to 28x28
23
+ image = cv2.resize(image, (28, 28))
24
+
25
+ # Normalize and reshape
26
+ image = image.astype('float32') / 255.0
27
+ image = image.reshape(1, 28, 28, 1)
28
+
29
+ # Predict
30
+ prediction = model.predict(image)
31
+ pred_label = np.argmax(prediction, axis=1)[0]
32
+
33
+ return str(pred_label)
34
+
35
+ with gr.Blocks() as interface:
36
+ gr.Markdown(
37
+ """
38
+ ## ✍️ Digit Classification using Convolutional Neural Network
39
+ Draw a digit in the sketchpad below (0 to 9), then click **Submit** to see the prediction.
40
+ """
41
+ )
42
+ with gr.Row():
43
+ sketchpad = gr.Sketchpad(image_mode='L')
44
+ output = gr.Label()
45
+ gr.Button("Submit").click(cnn_predict_digit, inputs=sketchpad, outputs=output)
46
+ gr.ClearButton([sketchpad, output])
47
+
48
+ interface.launch()
mnist_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c435ee80c60965b62fc5bd5b47fb5ede1ea23ada102062cc46237904c67eb41
3
+ size 1168216
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ tensorflow
2
+ gradio
3
+ opencv-python
4
+ numpy
5
+ Pillow