from flax import linen as nn import jax import jax.numpy as jnp from local_response_norm import LocalResponseNorm LATENT_DIM = 500 EPSILON = 1e-8 class Generator(nn.Module): @nn.compact def __call__(self, latent, training=True): x = nn.Dense(features=64)(latent) # x = nn.BatchNorm(not training)(x) x = nn.relu(x) x = nn.Dense(features=2*2*1024)(x) x = nn.BatchNorm(not training)(x) x = nn.relu(x) x = nn.Dropout(0.25, deterministic=not training)(x) x = x.reshape((x.shape[0], 2, 2, -1)) x4 = nn.ConvTranspose(features=512, kernel_size=(3, 3), strides=(2, 2))(x) x4 = LocalResponseNorm()(x4) x4 = nn.relu(x4) x4o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x4) x4 = nn.ConvTranspose(features=512, kernel_size=(3, 3))(x4) x4 = LocalResponseNorm()(x4) x4 = nn.relu(x4) x8 = nn.ConvTranspose(features=256, kernel_size=(3, 3), strides=(2, 2))(x4) x8 = LocalResponseNorm()(x8) x8 = nn.relu(x8) x8o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x8) x8 = nn.ConvTranspose(features=256, kernel_size=(3, 3))(x8) x8 = LocalResponseNorm()(x8) x8 = nn.relu(x8) x16 = nn.ConvTranspose(features=128, kernel_size=(3, 3), strides=(2, 2))(x8) x16 = LocalResponseNorm()(x16) x16 = nn.relu(x16) x16o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x16) x16 = nn.ConvTranspose(features=128, kernel_size=(3, 3))(x16) x16 = LocalResponseNorm()(x16) x16 = nn.relu(x16) x32 = nn.ConvTranspose(features=64, kernel_size=(3, 3), strides=(2, 2))(x16) x32 = LocalResponseNorm()(x32) x32 = nn.relu(x32) x32o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x32) x32 = nn.ConvTranspose(features=64, kernel_size=(3, 3))(x32) x32 = LocalResponseNorm()(x32) x32 = nn.relu(x32) x64 = nn.ConvTranspose(features=32, kernel_size=(3, 3), strides=(2, 2))(x32) x64 = LocalResponseNorm()(x64) x64 = nn.relu(x64) x64o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x64) x64 = nn.ConvTranspose(features=32, kernel_size=(3, 3))(x64) x64 = LocalResponseNorm()(x64) x64 = nn.relu(x64) x128 = nn.ConvTranspose(features=64, kernel_size=(3, 3), strides=(2, 2))(x64) x128 = LocalResponseNorm()(x128) x128 = nn.relu(x128) x128o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x128) return (nn.tanh(x128o), nn.tanh(x64o), nn.tanh(x32o), nn.tanh(x16o), nn.tanh(x8o), nn.tanh(x4o))