import streamlit as st from PIL import Image import jax import jax.numpy as jnp # JAX NumPy import numpy as np from huggingface_hub import HfFileSystem from flax.serialization import msgpack_restore, from_state_dict import time from generator import Generator, LATENT_DIM import math generator = Generator() variables = generator.init(jax.random.PRNGKey(0), jnp.zeros([1, LATENT_DIM]), training=False) fs = HfFileSystem() with fs.open("PrakhAI/AIPlane2/g_checkpoint.msgpack", "rb") as f: g_state = from_state_dict(variables, msgpack_restore(f.read())) def sample_latent(batch, key): return jax.random.normal(key, shape=(batch, LATENT_DIM)) def gridify(images): # num x image_width x image_height x channels # Every num can be padded to make a grid of size floor(sqrt(num)) x ceil(sqrt(num)) or ceil(sqrt(num)) x ceil(sqrt(num)) num = images.shape[0] image_width = images.shape[1] image_height = images.shape[2] channels = images.shape[3] width = math.floor(math.sqrt(num)) height = math.ceil(math.sqrt(num)) if width * height < num: width += 1 padded = np.concatenate([images, np.zeros((width*height-num, image_width, image_height, channels))], axis=0) return padded.reshape((width, height, image_width, image_height, -1)).transpose((0, 2, 1, 3, 4)).reshape((width * image_width, height * image_height, -1)) st.write("The model and its details are at https://huggingface.co/PrakhAI/AIPlane2") num_images = st.number_input(label="Number of images to generate", min_value=1, max_value=256, value=16) if st.button('Generate Planes'): latents = sample_latent(num_images, jax.random.PRNGKey(int(1_000_000 * time.time()))) (g_out128, _, _, _, _, _) = generator.apply({'params': g_state['params'], 'batch_stats': g_state['batch_stats']}, latents, training=False) img = (np.array(gridify(g_out128)+1)*255./2.).astype(np.uint8) st.image(Image.fromarray(img))