import streamlit as st from PIL import Image import jax import jax.numpy as jnp # JAX NumPy import numpy as np from huggingface_hub import HfFileSystem from flax.serialization import msgpack_restore, from_state_dict import time from generator import Generator, LATENT_DIM import math generator = Generator() variables = generator.init(jax.random.PRNGKey(0), jnp.zeros([1, LATENT_DIM]), training=False) fs = HfFileSystem() with fs.open("PrakhAI/AIPlane2/g_checkpoint.msgpack", "rb") as f: g_state = from_state_dict(variables, msgpack_restore(f.read())) def sample_latent(batch, key): return jax.random.normal(key, shape=(batch, LATENT_DIM)) def to_img(normalized): return ((normalized+1)*255./2.).astype(np.uint8) st.write("The model and its details are at https://huggingface.co/PrakhAI/AIPlane2") if st.button('Generate Random'): st.session_state['generate'] = None ROWS = 4 COLUMNS = 4 def set_latent(latent): st.session_state['generate'] = latent if 'generate' in st.session_state: unique_id = int(1_000_000 * time.time()) latents = sample_latent(ROWS * COLUMNS, jax.random.PRNGKey(unique_id)) previous = st.session_state['generate'] if previous is not None: if "similarity" not in st.session_state: st.session_state["similarity"] = 0.5 similarity = st.number_input(label="Mutation (for \"Generate Similar\") - lower value generates more similar images", key="similarity", min_value=0.01, max_value=1.0) latents = np.repeat([previous], repeats=16, axis=0) + similarity * latents (g_out128, _, _, _, _, _) = generator.apply({'params': g_state['params'], 'batch_stats': g_state['batch_stats']}, latents, training=False) img = np.array(to_img(g_out128)) for row in range(ROWS): with st.container(): for (col_idx, col) in enumerate(st.columns(COLUMNS)): with col: idx = row*COLUMNS + col_idx st.image(Image.fromarray(img[idx])) st.button(label="Generate Similar", key="%d_%d" % (unique_id, idx), on_click=set_latent, args=(latents[idx],))