PrakhAI commited on
Commit
c30102f
·
1 Parent(s): fd883a1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -9
app.py CHANGED
@@ -3,11 +3,9 @@ from PIL import Image
3
  import jax
4
  import jax.numpy as jnp # JAX NumPy
5
  import numpy as np
6
- from flax import linen as nn # Linen API
7
  from huggingface_hub import HfFileSystem
8
  from flax.serialization import msgpack_restore, from_state_dict
9
  import time
10
- from local_response_norm import LocalResponseNorm
11
  from generator import Generator, LATENT_DIM
12
 
13
  generator = Generator()
@@ -17,12 +15,26 @@ fs = HfFileSystem()
17
  with fs.open("PrakhAI/AIPlane2/g_checkpoint.msgpack", "rb") as f:
18
  g_state = from_state_dict(variables, msgpack_restore(f.read()))
19
 
20
- def sample_latent(key):
21
- return jax.random.normal(key, shape=(1, LATENT_DIM))
22
 
23
- if st.button('Generate Plane'):
24
- latents = sample_latent(jax.random.PRNGKey(int(1_000_000 * time.time())))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  (g_out128, _, _, _, _, _) = generator.apply({'params': g_state['params'], 'batch_stats': g_state['batch_stats']}, latents, training=False)
26
- img = ((np.array(g_out32[0])+1)*255./2.).astype(np.uint8)
27
- st.image(Image.fromarray(img))
28
- st.write("The model and its details are at https://huggingface.co/PrakhAI/AIPlane2")
 
3
  import jax
4
  import jax.numpy as jnp # JAX NumPy
5
  import numpy as np
 
6
  from huggingface_hub import HfFileSystem
7
  from flax.serialization import msgpack_restore, from_state_dict
8
  import time
 
9
  from generator import Generator, LATENT_DIM
10
 
11
  generator = Generator()
 
15
  with fs.open("PrakhAI/AIPlane2/g_checkpoint.msgpack", "rb") as f:
16
  g_state = from_state_dict(variables, msgpack_restore(f.read()))
17
 
18
+ def sample_latent(batch, key):
19
+ return jax.random.normal(key, shape=(batch, LATENT_DIM))
20
 
21
+ def gridify(images): # num x image_width x image_height x channels
22
+ # Every num can be padded to make a grid of size floor(sqrt(num)) x ceil(sqrt(num)) or ceil(sqrt(num)) x ceil(sqrt(num))
23
+ num = images.shape[0]
24
+ image_width = images.shape[1]
25
+ image_height = images.shape[2]
26
+ channels = images.shape[3]
27
+ width = math.floor(math.sqrt(num))
28
+ height = math.ceil(math.sqrt(num))
29
+ if width * height < num:
30
+ width += 1
31
+ padded = np.concatenate([images, np.zeros((width*height-num, image_width, image_height, channels))], axis=0)
32
+ return padded.reshape((width, height, image_width, image_height, -1)).transpose((0, 2, 1, 3, 4)).reshape((width * image_width, height * image_height, -1))
33
+
34
+ st.write("The model and its details are at https://huggingface.co/PrakhAI/AIPlane2")
35
+ num_images = st.number_input(label="Number of images to generate", min_value=1, max_value=256, value=16)
36
+ if st.button('Generate Planes'):
37
+ latents = sample_latent(num_images, jax.random.PRNGKey(int(1_000_000 * time.time())))
38
  (g_out128, _, _, _, _, _) = generator.apply({'params': g_state['params'], 'batch_stats': g_state['batch_stats']}, latents, training=False)
39
+ img = ((np.array(gridify(g_out128)+1)*255./2.).astype(np.uint8)
40
+ st.image(Image.fromarray(img))