|
import streamlit as st |
|
from PIL import Image |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
from flax import linen as nn |
|
from huggingface_hub import HfFileSystem |
|
from flax.serialization import msgpack_restore, from_state_dict |
|
import time |
|
from local_response_norm import LocalResponseNorm |
|
|
|
LATENT_DIM = 100 |
|
|
|
class Generator(nn.Module): |
|
@nn.compact |
|
def __call__(self, latent, training=True): |
|
x = nn.Dense(features=32)(latent) |
|
|
|
x = nn.relu(x) |
|
x = nn.Dense(features=2*2*256)(x) |
|
x = nn.BatchNorm(not training)(x) |
|
x = nn.relu(x) |
|
x = nn.Dropout(0.5, deterministic=not training)(x) |
|
x = x.reshape((x.shape[0], 2, 2, -1)) |
|
x4o = nn.ConvTranspose(features=3, kernel_size=(2, 2), strides=(2, 2))(x) |
|
x4 = nn.ConvTranspose(features=128, kernel_size=(2, 2), strides=(2, 2))(x) |
|
x4 = LocalResponseNorm()(x4) |
|
|
|
x8 = nn.relu(x4) |
|
|
|
x8o = nn.ConvTranspose(features=3, kernel_size=(2, 2), strides=(2, 2))(x8) |
|
x8 = nn.ConvTranspose(features=64, kernel_size=(2, 2), strides=(2, 2))(x8) |
|
x8 = LocalResponseNorm()(x8) |
|
|
|
x16 = nn.relu(x8) |
|
|
|
x16o = nn.ConvTranspose(features=3, kernel_size=(2, 2), strides=(2, 2))(x16) |
|
x16 = nn.ConvTranspose(features=32, kernel_size=(2, 2), strides=(2, 2))(x16) |
|
x16 = LocalResponseNorm()(x16) |
|
|
|
x32 = nn.relu(x16) |
|
|
|
x32o = nn.ConvTranspose(features=3, kernel_size=(2, 2), strides=(2, 2))(x32) |
|
return (nn.tanh(x32o), nn.tanh(x16o), nn.tanh(x8o), nn.tanh(x4o)) |
|
|
|
generator = Generator() |
|
variables = generator.init(jax.random.PRNGKey(0), jnp.zeros([1, LATENT_DIM]), training=False) |
|
|
|
fs = HfFileSystem() |
|
with fs.open("PrakhAI/AIPlane/g_checkpoint.msgpack", "rb") as f: |
|
g_state = from_state_dict(variables, msgpack_restore(f.read())) |
|
|
|
def sample_latent(key): |
|
return jax.random.normal(key, shape=(1, LATENT_DIM)) |
|
|
|
if st.button('Generate Plane'): |
|
latents = sample_latent(jax.random.PRNGKey(int(1_000_000 * time.time()))) |
|
(g_out32, g_out16, g_out8, g_out4) = generator.apply({'params': g_state['params'], 'batch_stats': g_state['batch_stats']}, latents, training=False) |
|
img = ((np.array(g_out32[0])+1)*255./2.).astype(np.uint8) |
|
st.image(Image.fromarray(img)) |
|
st.write("The model and its details are at https://huggingface.co/PrakhAI/AIPlane") |