|
import streamlit as st |
|
from PIL import Image |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
from huggingface_hub import HfFileSystem |
|
from flax.serialization import msgpack_restore, from_state_dict |
|
import time |
|
from generator import Generator, LATENT_DIM |
|
import math |
|
|
|
generator = Generator() |
|
variables = generator.init(jax.random.PRNGKey(0), jnp.zeros([1, LATENT_DIM]), training=False) |
|
|
|
fs = HfFileSystem() |
|
with fs.open("PrakhAI/AIPlane2/g_checkpoint.msgpack", "rb") as f: |
|
g_state = from_state_dict(variables, msgpack_restore(f.read())) |
|
|
|
def sample_latent(batch, key): |
|
return jax.random.normal(key, shape=(batch, LATENT_DIM)) |
|
|
|
def gridify(images): |
|
|
|
num = images.shape[0] |
|
image_width = images.shape[1] |
|
image_height = images.shape[2] |
|
channels = images.shape[3] |
|
width = math.floor(math.sqrt(num)) |
|
height = math.ceil(math.sqrt(num)) |
|
if width * height < num: |
|
width += 1 |
|
padded = np.concatenate([images, np.zeros((width*height-num, image_width, image_height, channels))], axis=0) |
|
return padded.reshape((width, height, image_width, image_height, -1)).transpose((0, 2, 1, 3, 4)).reshape((width * image_width, height * image_height, -1)) |
|
|
|
st.write("The model and its details are at https://huggingface.co/PrakhAI/AIPlane2") |
|
num_images = st.number_input(label="Number of images to generate", min_value=1, max_value=256, value=16) |
|
if st.button('Generate Planes'): |
|
latents = sample_latent(num_images, jax.random.PRNGKey(int(1_000_000 * time.time()))) |
|
(g_out128, _, _, _, _, _) = generator.apply({'params': g_state['params'], 'batch_stats': g_state['batch_stats']}, latents, training=False) |
|
img = (np.array(gridify(g_out128)+1)*255./2.).astype(np.uint8) |
|
st.image(Image.fromarray(img)) |