File size: 2,448 Bytes
fd883a1
 
 
 
 
c77e6c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from flax import linen as nn
import jax
import jax.numpy as jnp
from local_response_norm import LocalResponseNorm

LATENT_DIM = 500
EPSILON = 1e-8

class Generator(nn.Module):
  @nn.compact
  def __call__(self, latent, training=True):
    x = nn.Dense(features=64)(latent)
    # x = nn.BatchNorm(not training)(x)
    x = nn.relu(x)
    x = nn.Dense(features=2*2*1024)(x)
    x = nn.BatchNorm(not training)(x)
    x = nn.relu(x)
    x = nn.Dropout(0.25, deterministic=not training)(x)
    x = x.reshape((x.shape[0], 2, 2, -1))
    x4 = nn.ConvTranspose(features=512, kernel_size=(3, 3), strides=(2, 2))(x)
    x4 = LocalResponseNorm()(x4)
    x4 = nn.relu(x4)
    x4o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x4)
    x4 = nn.ConvTranspose(features=512, kernel_size=(3, 3))(x4)
    x4 = LocalResponseNorm()(x4)
    x4 = nn.relu(x4)
    x8 = nn.ConvTranspose(features=256, kernel_size=(3, 3), strides=(2, 2))(x4)
    x8 = LocalResponseNorm()(x8)
    x8 = nn.relu(x8)
    x8o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x8)
    x8 = nn.ConvTranspose(features=256, kernel_size=(3, 3))(x8)
    x8 = LocalResponseNorm()(x8)
    x8 = nn.relu(x8)
    x16 = nn.ConvTranspose(features=128, kernel_size=(3, 3), strides=(2, 2))(x8)
    x16 = LocalResponseNorm()(x16)
    x16 = nn.relu(x16)
    x16o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x16)
    x16 = nn.ConvTranspose(features=128, kernel_size=(3, 3))(x16)
    x16 = LocalResponseNorm()(x16)
    x16 = nn.relu(x16)
    x32 = nn.ConvTranspose(features=64, kernel_size=(3, 3), strides=(2, 2))(x16)
    x32 = LocalResponseNorm()(x32)
    x32 = nn.relu(x32)
    x32o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x32)
    x32 = nn.ConvTranspose(features=64, kernel_size=(3, 3))(x32)
    x32 = LocalResponseNorm()(x32)
    x32 = nn.relu(x32)
    x64 = nn.ConvTranspose(features=32, kernel_size=(3, 3), strides=(2, 2))(x32)
    x64 = LocalResponseNorm()(x64)
    x64 = nn.relu(x64)
    x64o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x64)
    x64 = nn.ConvTranspose(features=32, kernel_size=(3, 3))(x64)
    x64 = LocalResponseNorm()(x64)
    x64 = nn.relu(x64)
    x128 = nn.ConvTranspose(features=64, kernel_size=(3, 3), strides=(2, 2))(x64)
    x128 = LocalResponseNorm()(x128)
    x128 = nn.relu(x128)
    x128o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x128)
    return (nn.tanh(x128o), nn.tanh(x64o), nn.tanh(x32o), nn.tanh(x16o), nn.tanh(x8o), nn.tanh(x4o))