Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import os
|
|
3 |
import subprocess
|
4 |
import torch
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
UPLOAD_FOLDER = 'uploads'
|
8 |
OUTPUT_FOLDER = 'outputs'
|
@@ -18,6 +19,7 @@ def gradio_interface(image):
|
|
18 |
output_path = os.path.join(OUTPUT_FOLDER, "output.png")
|
19 |
|
20 |
image.save(input_path)
|
|
|
21 |
|
22 |
try:
|
23 |
# Ensure CUDA memory is freed before running inference
|
@@ -30,22 +32,33 @@ def gradio_interface(image):
|
|
30 |
"--input_path", input_path,
|
31 |
"--output_path", output_path
|
32 |
]
|
|
|
|
|
33 |
result = subprocess.run(command, capture_output=True, text=True)
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
if result.returncode != 0:
|
36 |
return f"Error: {result.stderr}"
|
37 |
|
38 |
-
#
|
|
|
39 |
if not os.path.exists(output_path):
|
40 |
return "Error: Output image not generated."
|
41 |
|
42 |
-
|
|
|
|
|
43 |
return Image.open(output_path).copy()
|
44 |
|
45 |
except Exception as e:
|
|
|
46 |
return f"Exception: {str(e)}"
|
47 |
|
48 |
-
# Launch Gradio
|
49 |
iface = gr.Interface(
|
50 |
fn=gradio_interface,
|
51 |
inputs=gr.Image(type="pil"),
|
@@ -53,4 +66,5 @@ iface = gr.Interface(
|
|
53 |
title="Image Restoration with NAFNet"
|
54 |
)
|
55 |
|
|
|
56 |
iface.launch()
|
|
|
3 |
import subprocess
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
+
import time
|
7 |
|
8 |
UPLOAD_FOLDER = 'uploads'
|
9 |
OUTPUT_FOLDER = 'outputs'
|
|
|
19 |
output_path = os.path.join(OUTPUT_FOLDER, "output.png")
|
20 |
|
21 |
image.save(input_path)
|
22 |
+
print(f"Input image saved at: {input_path}")
|
23 |
|
24 |
try:
|
25 |
# Ensure CUDA memory is freed before running inference
|
|
|
32 |
"--input_path", input_path,
|
33 |
"--output_path", output_path
|
34 |
]
|
35 |
+
|
36 |
+
print("Running model...")
|
37 |
result = subprocess.run(command, capture_output=True, text=True)
|
38 |
+
print("Model execution completed.")
|
39 |
+
|
40 |
+
# Log the output
|
41 |
+
print("STDOUT:", result.stdout)
|
42 |
+
print("STDERR:", result.stderr)
|
43 |
|
44 |
if result.returncode != 0:
|
45 |
return f"Error: {result.stderr}"
|
46 |
|
47 |
+
# Wait for output file to be generated
|
48 |
+
time.sleep(2) # Give time for file system updates
|
49 |
if not os.path.exists(output_path):
|
50 |
return "Error: Output image not generated."
|
51 |
|
52 |
+
print(f"Output image generated: {output_path}")
|
53 |
+
|
54 |
+
# Explicitly reload the image to avoid caching issues
|
55 |
return Image.open(output_path).copy()
|
56 |
|
57 |
except Exception as e:
|
58 |
+
print(f"Exception occurred: {str(e)}")
|
59 |
return f"Exception: {str(e)}"
|
60 |
|
61 |
+
# Launch Gradio
|
62 |
iface = gr.Interface(
|
63 |
fn=gradio_interface,
|
64 |
inputs=gr.Image(type="pil"),
|
|
|
66 |
title="Image Restoration with NAFNet"
|
67 |
)
|
68 |
|
69 |
+
print("Starting Gradio interface...")
|
70 |
iface.launch()
|