Spaces:
Sleeping
Sleeping
Upload demo.py
Browse files- NAFNet/demo.py +62 -0
NAFNet/demo.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Copyright (c) 2022 megvii-model. All Rights Reserved.
|
3 |
+
# ------------------------------------------------------------------------
|
4 |
+
# Modified from BasicSR (https://github.com/xinntao/BasicSR)
|
5 |
+
# Copyright 2018-2020 BasicSR Authors
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
import torch
|
8 |
+
|
9 |
+
# from basicsr.data import create_dataloader, create_dataset
|
10 |
+
from basicsr.models import create_model
|
11 |
+
from basicsr.train import parse_options
|
12 |
+
from basicsr.utils import FileClient, imfrombytes, img2tensor, padding, tensor2img, imwrite
|
13 |
+
|
14 |
+
# from basicsr.utils import (get_env_info, get_root_logger, get_time_str,
|
15 |
+
# make_exp_dirs)
|
16 |
+
# from basicsr.utils.options import dict2str
|
17 |
+
|
18 |
+
def main():
|
19 |
+
# parse options, set distributed setting, set ramdom seed
|
20 |
+
opt = parse_options(is_train=False)
|
21 |
+
opt['num_gpu'] = torch.cuda.device_count()
|
22 |
+
|
23 |
+
img_path = opt['img_path'].get('input_img')
|
24 |
+
output_path = opt['img_path'].get('output_img')
|
25 |
+
|
26 |
+
|
27 |
+
## 1. read image
|
28 |
+
file_client = FileClient('disk')
|
29 |
+
|
30 |
+
img_bytes = file_client.get(img_path, None)
|
31 |
+
try:
|
32 |
+
img = imfrombytes(img_bytes, float32=True)
|
33 |
+
except:
|
34 |
+
raise Exception("path {} not working".format(img_path))
|
35 |
+
|
36 |
+
img = img2tensor(img, bgr2rgb=True, float32=True)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
## 2. run inference
|
41 |
+
opt['dist'] = False
|
42 |
+
model = create_model(opt)
|
43 |
+
|
44 |
+
model.feed_data(data={'lq': img.unsqueeze(dim=0)})
|
45 |
+
|
46 |
+
if model.opt['val'].get('grids', False):
|
47 |
+
model.grids()
|
48 |
+
|
49 |
+
model.test()
|
50 |
+
|
51 |
+
if model.opt['val'].get('grids', False):
|
52 |
+
model.grids_inverse()
|
53 |
+
|
54 |
+
visuals = model.get_current_visuals()
|
55 |
+
sr_img = tensor2img([visuals['result']])
|
56 |
+
imwrite(sr_img, output_path)
|
57 |
+
|
58 |
+
print(f'inference {img_path} .. finished. saved to {output_path}')
|
59 |
+
|
60 |
+
if __name__ == '__main__':
|
61 |
+
main()
|
62 |
+
|