Spaces:
Runtime error
Runtime error
File size: 9,193 Bytes
827e617 5466c6a 827e617 5466c6a 827e617 5466c6a 121ef4a 827e617 5466c6a 827e617 5466c6a 827e617 cfc2d94 827e617 cfc2d94 827e617 5466c6a 827e617 5466c6a 827e617 5466c6a 827e617 5466c6a 827e617 5466c6a 827e617 5466c6a 827e617 82d5a2f 827e617 82d5a2f 827e617 5466c6a 82d5a2f 827e617 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# app.py
# RAG app for chatting with research papers (optimized for Hugging Face Spaces)
import os, sys, subprocess, re, json, uuid, gc
from typing import List, Dict, Tuple
# -----------------------------
# Auto-install deps if missing
# -----------------------------
def ensure(pkg, pip_name=None):
try:
__import__(pkg)
except ImportError:
subprocess.check_call([sys.executable, "-m", "pip", "install", pip_name or pkg])
ensure("torch")
ensure("transformers")
ensure("accelerate")
ensure("gradio")
ensure("faiss", "faiss-cpu")
ensure("sentence_transformers", "sentence-transformers")
ensure("pypdf")
ensure("docx", "python-docx")
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TextIteratorStreamer
)
from sentence_transformers import SentenceTransformer
import faiss, gradio as gr
from pypdf import PdfReader
# -----------------------------
# Config
# -----------------------------
DATA_DIR = "rag_data"
os.makedirs(DATA_DIR, exist_ok=True)
INDEX_PATH = os.path.join(DATA_DIR, "faiss.index")
DOCS_PATH = os.path.join(DATA_DIR, "docs.jsonl")
# Default Models
default_emb_model = "allenai/specter2_base"
default_llm_model = "microsoft/Phi-3-mini-4k-instruct"
EMB_MODEL_ID = os.environ.get("EMB_MODEL_ID", default_emb_model)
LLM_MODEL_ID = os.environ.get("LLM_MODEL_ID", default_llm_model)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# -----------------------------
# File loaders
# -----------------------------
def read_txt(path):
return open(path, "r", encoding="utf-8", errors="ignore").read()
def read_pdf(path):
r = PdfReader(path)
return "\n".join([p.extract_text() or "" for p in r.pages])
def read_docx(path):
import docx
d = docx.Document(path)
return "\n".join([p.text for p in d.paragraphs])
def load_file(path):
ext = os.path.splitext(path)[1].lower()
if ext in [".txt", ".md"]:
return read_txt(path)
if ext == ".pdf":
return read_pdf(path)
if ext == ".docx":
return read_docx(path)
return read_txt(path)
# -----------------------------
# Chunking
# -----------------------------
def normalize_ws(s: str):
return re.sub(r"\s+", " ", s).strip()
def chunk_text(text, chunk_size=900, overlap=150):
text = normalize_ws(text)
chunks = []
for i in range(0, len(text), chunk_size - overlap):
chunks.append(text[i:i+chunk_size])
return chunks
# -----------------------------
# VectorStore
# -----------------------------
class VectorStore:
def __init__(self, emb_model):
self.emb_model = emb_model
self.dim = emb_model.get_sentence_embedding_dimension()
if os.path.exists(INDEX_PATH):
self.index = faiss.read_index(INDEX_PATH)
self.meta = [json.loads(l) for l in open(DOCS_PATH, "r", encoding="utf-8")]
else:
self.index = faiss.IndexFlatIP(self.dim)
self.meta = []
def _embed(self, texts):
embs = self.emb_model.encode(texts, convert_to_tensor=True, normalize_embeddings=True)
return embs.cpu().numpy()
def add(self, chunks, source):
if not chunks: return 0
embs = self._embed(chunks)
faiss.normalize_L2(embs)
self.index.add(embs)
recs = []
for c in chunks:
rec = {"id": str(uuid.uuid4()), "source": source, "text": c}
self.meta.append(rec)
recs.append(json.dumps(rec))
with open(DOCS_PATH, "a", encoding="utf-8") as f:
f.write("\n".join(recs) + "\n")
faiss.write_index(self.index, INDEX_PATH)
return len(chunks)
def search(self, query, k=5):
q = self._embed([query])
faiss.normalize_L2(q)
D, I = self.index.search(q, k)
return [(float(d), self.meta[i]) for d, i in zip(D[0], I[0]) if i != -1]
def clear(self):
self.index = faiss.IndexFlatIP(self.dim)
self.meta = []
if os.path.exists(INDEX_PATH): os.remove(INDEX_PATH)
if os.path.exists(DOCS_PATH): os.remove(DOCS_PATH)
# -----------------------------
# Load models
# -----------------------------
print(f"[RAG] Loading embeddings: {EMB_MODEL_ID}")
EMB = SentenceTransformer(EMB_MODEL_ID, device=DEVICE)
VEC = VectorStore(EMB)
print(f"[RAG] Loading LLM: {LLM_MODEL_ID}")
bnb_config = None
if DEVICE == "cuda":
from transformers import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
TOKENIZER = AutoTokenizer.from_pretrained(LLM_MODEL_ID, use_fast=True, trust_remote_code=True)
LLM = AutoModelForCausalLM.from_pretrained(
LLM_MODEL_ID,
device_map="auto",
quantization_config=bnb_config,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True,
trust_remote_code=True,
)
# -----------------------------
# Prompt + Generate
# -----------------------------
SYSTEM_PROMPT = "You are a helpful assistant. Use the provided context from research papers to answer questions."
def build_prompt(query, history, retrieved):
ctx = "\n\n".join([f"[{i+1}] {m['text']}" for i, (_, m) in enumerate(retrieved)])
# Try to use chat template if available
if hasattr(TOKENIZER, "apply_chat_template"):
messages = [{"role": "system", "content": SYSTEM_PROMPT + "\nContext:\n" + ctx}]
for u, a in history[-3:]:
messages.append({"role": "user", "content": u})
messages.append({"role": "assistant", "content": a})
messages.append({"role": "user", "content": query})
return TOKENIZER.apply_chat_template(messages, tokenize=False)
else:
# Fallback manual prompt
hist = "".join([f"<user>{u}</user><assistant>{a}</assistant>" for u, a in history[-3:]])
return f"<system>{SYSTEM_PROMPT}\nContext:\n{ctx}</system>{hist}<user>{query}</user><assistant>"
@torch.inference_mode()
def generate_answer(prompt, temperature=0.3, max_new_tokens=512):
streamer = TextIteratorStreamer(TOKENIZER, skip_prompt=True, skip_special_tokens=True)
inputs = TOKENIZER([prompt], return_tensors="pt").to(LLM.device)
kwargs = dict(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
do_sample=temperature > 0,
streamer=streamer
)
import threading
t = threading.Thread(target=LLM.generate, kwargs=kwargs)
t.start()
out = ""
for token in streamer:
out += token
yield out
t.join()
# -----------------------------
# Gradio UI
# -----------------------------
def ui_ingest(files, chunk_size, overlap):
total = 0
names = []
for f in files or []:
text = load_file(f.name)
chunks = chunk_text(text, chunk_size, overlap)
n = VEC.add(chunks, os.path.basename(f.name))
total += n; names.append(f.name)
return f"Added {total} chunks", "\n".join(names) or "β", VEC.index.ntotal
def ui_clear():
VEC.clear()
gc.collect()
return "Index cleared", "β", 0
def ui_chat(msg, history, top_k, temperature, max_tokens):
if not msg.strip():
return history, ""
retrieved = VEC.search(msg, top_k)
prompt = build_prompt(msg, history, retrieved)
reply = ""
for partial in generate_answer(prompt, temperature, max_tokens):
reply = partial
yield history + [(msg, reply)], ""
yield history + [(msg, reply)], ""
with gr.Blocks() as demo:
gr.Markdown("# ππ Research Paper RAG Chat (Phi-3-mini + Specter2)")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(height=500)
msg = gr.Textbox(placeholder="Ask a question...")
with gr.Row():
send = gr.Button("Send", variant="primary")
clearc = gr.Button("Clear Chat")
with gr.Column():
files = gr.File(label="Upload PDFs/DOCX/TXT", file_types=[".pdf", ".docx", ".txt", ".md"], file_count="multiple")
chunk_size = gr.Slider(200,2000,900,step=50,label="Chunk Size")
overlap = gr.Slider(0,400,150,step=10,label="Overlap")
ingest_btn = gr.Button("Index Documents")
status = gr.Textbox(label="Status", value="β")
added = gr.Textbox(label="Files", value="β")
total = gr.Number(label="Total Chunks", value=VEC.index.ntotal)
clear_idx = gr.Button("Clear Index", variant="stop")
top_k = gr.Slider(1,10,5,1,label="Top-K")
temperature = gr.Slider(0.0,1.5,0.3,0.1,label="Temperature")
max_tokens = gr.Slider(64,2048,512,64,label="Max New Tokens")
ingest_btn.click(ui_ingest, [files, chunk_size, overlap], [status, added, total])
clear_idx.click(ui_clear, [], [status, added, total])
send.click(ui_chat, [msg, chatbot, top_k, temperature, max_tokens], [chatbot, msg])
msg.submit(ui_chat, [msg, chatbot, top_k, temperature, max_tokens], [chatbot, msg])
clearc.click(lambda: ([], ""), [], [chatbot, msg])
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|