Pooya-Fallah's picture
Update app.py
b949dde verified
import torch
import nemo.collections.asr as nemo_asr
import gc
import numpy as np
import torchaudio
pretrained_model_path="./stt_fa_fastconformer_hybrid_large_finetuned.nemo"
# Clear up memory
torch.cuda.empty_cache()
gc.collect()
model = nemo_asr.models.EncDecHybridRNNTCTCModel.restore_from(pretrained_model_path)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# device = 'cpu' # You can transcribe even longer samples on the CPU, though it will take much longer !
model = model.to(device)
model.freeze()
def transcribe(audio):
# 'audio' is a tuple: (sample_rate, data)
sample_rate, data = audio
# Convert to mono if stereo
if data.ndim > 1:
data = data.mean(axis=1)
# Ensure the model is on the correct device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Convert audio data to the expected format
if isinstance(data, np.ndarray):
audio_tensor = torch.tensor(data, dtype=torch.float32)
else:
raise ValueError("Audio data must be a numpy array")
# Resample if sample rate is not 16000
target_sample_rate = 16000
if sample_rate != target_sample_rate:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
audio_tensor = resampler(audio_tensor)
# Trim audio if longer than 600 seconds
max_length = 600 * target_sample_rate # 600 seconds
if audio_tensor.shape[-1] > max_length:
audio_tensor = audio_tensor[..., :max_length]
# Transcribe
with torch.no_grad():
transcript = model.transcribe(audio_tensor)
return transcript[0][0] # Assuming single input
import gradio as gr
interface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources=["upload", "microphone"]), # Allows both file upload and recording
outputs="text",
live=False # Set to True for real-time transcription
)
interface.launch()