Spaces:
Runtime error
Runtime error
import torch | |
import nemo.collections.asr as nemo_asr | |
import gc | |
import numpy as np | |
import torchaudio | |
pretrained_model_path="./stt_fa_fastconformer_hybrid_large_finetuned.nemo" | |
# Clear up memory | |
torch.cuda.empty_cache() | |
gc.collect() | |
model = nemo_asr.models.EncDecHybridRNNTCTCModel.restore_from(pretrained_model_path) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# device = 'cpu' # You can transcribe even longer samples on the CPU, though it will take much longer ! | |
model = model.to(device) | |
model.freeze() | |
def transcribe(audio): | |
# 'audio' is a tuple: (sample_rate, data) | |
sample_rate, data = audio | |
# Convert to mono if stereo | |
if data.ndim > 1: | |
data = data.mean(axis=1) | |
# Ensure the model is on the correct device | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Convert audio data to the expected format | |
if isinstance(data, np.ndarray): | |
audio_tensor = torch.tensor(data, dtype=torch.float32) | |
else: | |
raise ValueError("Audio data must be a numpy array") | |
# Resample if sample rate is not 16000 | |
target_sample_rate = 16000 | |
if sample_rate != target_sample_rate: | |
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate) | |
audio_tensor = resampler(audio_tensor) | |
# Trim audio if longer than 600 seconds | |
max_length = 600 * target_sample_rate # 600 seconds | |
if audio_tensor.shape[-1] > max_length: | |
audio_tensor = audio_tensor[..., :max_length] | |
# Transcribe | |
with torch.no_grad(): | |
transcript = model.transcribe(audio_tensor) | |
return transcript[0][0] # Assuming single input | |
import gradio as gr | |
interface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(sources=["upload", "microphone"]), # Allows both file upload and recording | |
outputs="text", | |
live=False # Set to True for real-time transcription | |
) | |
interface.launch() |