Naphat Sornwichai
commited on
Commit
·
1d415e7
1
Parent(s):
0fe5052
update major files
Browse files- README.md +12 -0
- app.py +176 -0
- requirements.txt +5 -0
- test.ipynb +66 -0
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Jumps
|
3 |
+
emoji: 👀
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.44.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from faster_whisper import WhisperModel
|
4 |
+
import yt_dlp
|
5 |
+
from openai import OpenAI
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
import time
|
9 |
+
import uuid
|
10 |
+
|
11 |
+
print("Initializing transcription model (faster-whisper)...")
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
compute_type = "float16" if device == "cuda" else "int8"
|
14 |
+
model_size = "large-v3-turbo"
|
15 |
+
model = WhisperModel(model_size, device=device, compute_type=compute_type)
|
16 |
+
print("Transcription model loaded successfully.")
|
17 |
+
|
18 |
+
def download_youtube_audio(url: str) -> str:
|
19 |
+
unique_id = uuid.uuid4()
|
20 |
+
output_template = f'{unique_id}.%(ext)s'
|
21 |
+
final_filepath = f'{unique_id}.mp3'
|
22 |
+
ydl_opts = {
|
23 |
+
'format': 'bestaudio/best',
|
24 |
+
'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192'}],
|
25 |
+
'outtmpl': output_template,
|
26 |
+
'quiet': True,
|
27 |
+
'overwrite': True,
|
28 |
+
}
|
29 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
30 |
+
ydl.download([url])
|
31 |
+
return final_filepath
|
32 |
+
|
33 |
+
def transcribe_and_summarize(audio_file: str, youtube_url: str):
|
34 |
+
log_history = ""
|
35 |
+
def log(message):
|
36 |
+
nonlocal log_history
|
37 |
+
timestamp = time.strftime("%H:%M:%S")
|
38 |
+
log_history += f"[{timestamp}] {message}\n"
|
39 |
+
return log_history
|
40 |
+
|
41 |
+
loading_message = "⏳ Generating summary..."
|
42 |
+
yield log("Process started."), "", ""
|
43 |
+
|
44 |
+
api_key = os.getenv('TYPHOON_API')
|
45 |
+
if not api_key:
|
46 |
+
yield log("TYPHOON_API environment variable not set."), "", gr.Markdown("## Error\nAPI key missing")
|
47 |
+
return
|
48 |
+
|
49 |
+
if audio_file is None and not youtube_url:
|
50 |
+
raise gr.Error("Please upload an audio file or provide a YouTube link.")
|
51 |
+
|
52 |
+
filepath = ""
|
53 |
+
is_downloaded = False
|
54 |
+
try:
|
55 |
+
if youtube_url:
|
56 |
+
yield log("Downloading YouTube audio..."), "", ""
|
57 |
+
filepath = download_youtube_audio(youtube_url)
|
58 |
+
is_downloaded = True
|
59 |
+
yield log(f"Downloaded to {filepath}"), "", ""
|
60 |
+
else:
|
61 |
+
filepath = audio_file
|
62 |
+
|
63 |
+
yield log("Transcription started (Language: Thai)..."), "", ""
|
64 |
+
segments, info = model.transcribe(filepath, beam_size=5, language="th", task="transcribe")
|
65 |
+
transcribed_text = ""
|
66 |
+
for segment in segments:
|
67 |
+
line = f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text.strip()}"
|
68 |
+
transcribed_text += segment.text + " "
|
69 |
+
yield log(line), transcribed_text, ""
|
70 |
+
|
71 |
+
yield log("Transcription complete."), transcribed_text, ""
|
72 |
+
yield log("Sending to AI for summarization..."), transcribed_text, loading_message
|
73 |
+
|
74 |
+
client = OpenAI(api_key=api_key, base_url="https://api.opentyphoon.ai/v1")
|
75 |
+
system_prompt = f"""You are an automated system that converts transcripts into a blog post.
|
76 |
+
Your ONLY function is to output a valid JSON object. All text values in the JSON MUST be in the Thai language.
|
77 |
+
หน้าที่เดียวของคุณคือการส่งออกอ็อบเจกต์ JSON ที่ถูกต้อง โดยค่าที่เป็นข้อความทั้งหมดต้องเป็นภาษาไทยเท่านั้น
|
78 |
+
Do NOT write any explanations. The response MUST start with `{{` and end with `}}`.
|
79 |
+
|
80 |
+
The JSON object must have the following structure:
|
81 |
+
{{
|
82 |
+
"title": "หัวข้อบทความที่น่าสนใจและเกี่ยวข้อง (เป็นภาษาไทย)",
|
83 |
+
"key_takeaway": "สรุปใจความสำคัญของเนื้อหาทั้งหมดในหนึ่งย่อหน้า (เป็นภาษาไทย)",
|
84 |
+
"main_ideas": [
|
85 |
+
"ประเด็นหลักหรือใจความสำคัญ (เป็นภาษาไทย)",
|
86 |
+
"ประเด็นหลักถัดไป...",
|
87 |
+
"และต่อไปเรื่อยๆ..."
|
88 |
+
],
|
89 |
+
"conclusion": "ย่อหน้าสรุปปิดท้าย (เป็นภาษาไทย)"
|
90 |
+
}}"""
|
91 |
+
response = client.chat.completions.create(
|
92 |
+
model="typhoon-v2.1-12b-instruct",
|
93 |
+
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": transcribed_text}],
|
94 |
+
max_tokens=2048,
|
95 |
+
temperature=0.7
|
96 |
+
)
|
97 |
+
summary_json_string = response.choices[0].message.content
|
98 |
+
if summary_json_string.strip().startswith("```json"):
|
99 |
+
summary_json_string = summary_json_string.strip()[7:-4].strip()
|
100 |
+
|
101 |
+
data = json.loads(summary_json_string)
|
102 |
+
title = data.get("title", "Title Not Found")
|
103 |
+
key_takeaway = data.get("key_takeaway", "")
|
104 |
+
main_ideas = data.get("main_ideas", [])
|
105 |
+
conclusion = data.get("conclusion", "")
|
106 |
+
summary_markdown = f"# {title}\n\n<p>{key_takeaway}</p>\n\n## Key Ideas\n\n<ul>"
|
107 |
+
for idea in main_ideas:
|
108 |
+
summary_markdown += f"<li>{idea}</li>"
|
109 |
+
summary_markdown += f"</ul>\n\n## Conclusion\n\n<p>{conclusion}</p>"
|
110 |
+
|
111 |
+
yield log("Summarization complete."), transcribed_text, summary_markdown
|
112 |
+
|
113 |
+
finally:
|
114 |
+
if is_downloaded and os.path.exists(filepath):
|
115 |
+
os.remove(filepath)
|
116 |
+
|
117 |
+
def update_video_preview(url):
|
118 |
+
if not url:
|
119 |
+
return gr.update(value=None, visible=False)
|
120 |
+
video_id = None
|
121 |
+
try:
|
122 |
+
if "youtube.com/shorts/" in url:
|
123 |
+
video_id = url.split("/shorts/")[1].split("?")[0]
|
124 |
+
elif "watch?v=" in url:
|
125 |
+
video_id = url.split("watch?v=")[1].split("&")[0]
|
126 |
+
elif "youtu.be/" in url:
|
127 |
+
video_id = url.split("youtu.be/")[1].split("?")[0]
|
128 |
+
except IndexError:
|
129 |
+
pass
|
130 |
+
if video_id:
|
131 |
+
embed_url = f"https://www.youtube.com/embed/{video_id}"
|
132 |
+
iframe_html = f'<iframe width="100%" height="315" src="{embed_url}" frameborder="0" allowfullscreen></iframe>'
|
133 |
+
return gr.update(value=iframe_html, visible=True)
|
134 |
+
return gr.update(value=None, visible=False)
|
135 |
+
|
136 |
+
css = """
|
137 |
+
@import url('https://fonts.googleapis.com/css2?family=Sarabun:wght@400;700&display=swap');
|
138 |
+
.blog-output { font-family: 'Sarabun', sans-serif; line-height: 1.8; max-width: 800px; margin: auto; padding: 2rem; border-radius: 12px; background-color: #ffffff; border: 1px solid #e5e7eb; }
|
139 |
+
.blog-output h1 { font-size: 2.2em; font-weight: 700; border-bottom: 2px solid #f3f4f6; padding-bottom: 15px; margin-bottom: 25px; color: #111827; }
|
140 |
+
.blog-output h2 { font-size: 1.6em; font-weight: 700; margin-top: 40px; margin-bottom: 20px; color: #1f2937; }
|
141 |
+
.blog-output p { font-size: 1.1em; margin-bottom: 20px; color: #374151; }
|
142 |
+
.blog-output ul { padding-left: 25px; list-style-type: disc; }
|
143 |
+
.blog-output li { margin-bottom: 12px; padding-left: 5px; }
|
144 |
+
"""
|
145 |
+
|
146 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), css=css) as demo:
|
147 |
+
gr.Markdown("# 🎙️ Audio to Blog Summarizer ✒️")
|
148 |
+
with gr.Row():
|
149 |
+
with gr.Column(scale=1):
|
150 |
+
with gr.Tabs():
|
151 |
+
with gr.TabItem("⬆️ Upload Audio"):
|
152 |
+
audio_file_input = gr.Audio(label="Upload Audio File", type="filepath")
|
153 |
+
with gr.TabItem("🔗 YouTube Link"):
|
154 |
+
youtube_url_input = gr.Textbox(label="YouTube URL", placeholder="Paste a YouTube link here...")
|
155 |
+
submit_button = gr.Button("🚀 Generate Blog Post", variant="primary")
|
156 |
+
video_preview = gr.HTML(visible=False)
|
157 |
+
with gr.Accordion("📝 View Process Log", open=True):
|
158 |
+
log_output = gr.Textbox(label="Log", interactive=False, lines=10)
|
159 |
+
with gr.Column(scale=2):
|
160 |
+
gr.Markdown("## ✨ Article Output")
|
161 |
+
blog_summary_output = gr.Markdown(elem_classes=["blog-output"])
|
162 |
+
with gr.Accordion("📜 View Full Transcription", open=False):
|
163 |
+
transcription_output = gr.Textbox(label="Full Text", interactive=False, lines=10)
|
164 |
+
|
165 |
+
submit_button.click(fn=transcribe_and_summarize,
|
166 |
+
inputs=[audio_file_input, youtube_url_input],
|
167 |
+
outputs=[log_output, transcription_output, blog_summary_output])
|
168 |
+
youtube_url_input.change(fn=update_video_preview,
|
169 |
+
inputs=youtube_url_input,
|
170 |
+
outputs=video_preview)
|
171 |
+
demo.load(fn=update_video_preview,
|
172 |
+
inputs=youtube_url_input,
|
173 |
+
outputs=video_preview)
|
174 |
+
|
175 |
+
if __name__ == "__main__":
|
176 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
faster-whisper
|
4 |
+
yt-dlp
|
5 |
+
openai
|
test.ipynb
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 6,
|
6 |
+
"id": "81d301b6",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Detected language 'th' with probability 0.993038\n",
|
14 |
+
"[0.00s -> 6.72s] เช่น ลุงแดงบอกว่า การเล่นเนี่ย สมมุติเล่นคอร์ดสี่ คอร์ดสี่อย่างงี้\n",
|
15 |
+
"[6.72s -> 11.88s] คอร์ดสี่อย่างงี้ มันถูกทั้งหมด แต่เวลาเอาไปใช้งานจริงจริง\n",
|
16 |
+
"[11.88s -> 15.60s] มันจะทําอย่างนั้นไม่ได้ มันต้องเลือกเอาว่าเล่นอะไรที่มันดีที่สุด\n",
|
17 |
+
"[15.60s -> 19.50s] เออ ลูกหลานลองฟังเสียงคอร์ด เงื้อเสียงมันต่างกัน\n",
|
18 |
+
"[19.50s -> 23.10s] ฟังแบบนี้มันกําแก่งนะ เนี้ย\n",
|
19 |
+
"[24.78s -> 30.58s] แล้วแขมเล่นไปต้องคอยระวัง ระวังไอ้สายห้ากับหกด้วย\n",
|
20 |
+
"[30.58s -> 32.98s] เดี๋ยวมันจะวิ่งออกมากวนกัน เพราะปลิ๊กมันขบยาก\n",
|
21 |
+
"[32.98s -> 35.54s] เดี๋ยวมันปลายไปโดนนิดหนึ่ง มันก็ออกแล้ว\n",
|
22 |
+
"[35.54s -> 40.58s] เราจะดิดหกสายฟังให้ดีนะลูกหลาย ถ้าจับแบบนี้\n",
|
23 |
+
"[40.58s -> 45.98s] บอร์ด ดัง บอร์ด เห็นไหม เล่นแบบนี้ก็เล่นในทั่วไป\n",
|
24 |
+
"[45.98s -> 50.18s] เสียงแรงต่างมา ไม่ผิดนะ แต่ก็ดีแบบนั้น เอาดี ๆ เลย\n",
|
25 |
+
"[50.18s -> 54.50s] บอร์ด ชัดเจน บอร์ด เห็นไหม แล้วดีดกันเลย\n"
|
26 |
+
]
|
27 |
+
}
|
28 |
+
],
|
29 |
+
"source": [
|
30 |
+
"from faster_whisper import WhisperModel\n",
|
31 |
+
"\n",
|
32 |
+
"model_size = \"large-v3\"\n",
|
33 |
+
"\n",
|
34 |
+
"model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\")\n",
|
35 |
+
"\n",
|
36 |
+
"segments, info = model.transcribe(\"bacfd788-dd5c-4ff3-851a-45bbf742acd5.mp3\", beam_size=5)\n",
|
37 |
+
"\n",
|
38 |
+
"print(\"Detected language '%s' with probability %f\" % (info.language, info.language_probability))\n",
|
39 |
+
"\n",
|
40 |
+
"for segment in segments:\n",
|
41 |
+
" print(\"[%.2fs -> %.2fs] %s\" % (segment.start, segment.end, segment.text))"
|
42 |
+
]
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"metadata": {
|
46 |
+
"kernelspec": {
|
47 |
+
"display_name": "Jumps",
|
48 |
+
"language": "python",
|
49 |
+
"name": "python3"
|
50 |
+
},
|
51 |
+
"language_info": {
|
52 |
+
"codemirror_mode": {
|
53 |
+
"name": "ipython",
|
54 |
+
"version": 3
|
55 |
+
},
|
56 |
+
"file_extension": ".py",
|
57 |
+
"mimetype": "text/x-python",
|
58 |
+
"name": "python",
|
59 |
+
"nbconvert_exporter": "python",
|
60 |
+
"pygments_lexer": "ipython3",
|
61 |
+
"version": "3.11.11"
|
62 |
+
}
|
63 |
+
},
|
64 |
+
"nbformat": 4,
|
65 |
+
"nbformat_minor": 5
|
66 |
+
}
|