Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,18 @@
|
|
| 1 |
-
import spaces
|
| 2 |
import transformers
|
| 3 |
import re
|
| 4 |
-
from transformers import
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
-
import json
|
| 8 |
-
import os
|
| 9 |
-
import shutil
|
| 10 |
-
import requests
|
| 11 |
-
import pandas as pd
|
| 12 |
import difflib
|
| 13 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
| 14 |
|
| 15 |
# OCR Correction Model
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
import torch
|
| 19 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 20 |
-
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
| 23 |
# Load pre-trained model and tokenizer
|
| 24 |
-
|
| 25 |
-
model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 26 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 27 |
|
| 28 |
# CSS for formatting
|
|
@@ -33,78 +23,12 @@ css = """
|
|
| 33 |
margin-right: 2em;
|
| 34 |
font-size: 1.2em;
|
| 35 |
}
|
| 36 |
-
:target {
|
| 37 |
-
background-color: #CCF3DF;
|
| 38 |
-
}
|
| 39 |
-
.source {
|
| 40 |
-
float: left;
|
| 41 |
-
max-width: 17%;
|
| 42 |
-
margin-left: 2%;
|
| 43 |
-
}
|
| 44 |
-
.tooltip {
|
| 45 |
-
position: relative;
|
| 46 |
-
cursor: pointer;
|
| 47 |
-
font-variant-position: super;
|
| 48 |
-
color: #97999b;
|
| 49 |
-
}
|
| 50 |
-
.tooltip:hover::after {
|
| 51 |
-
content: attr(data-text);
|
| 52 |
-
position: absolute;
|
| 53 |
-
left: 0;
|
| 54 |
-
top: 120%;
|
| 55 |
-
white-space: pre-wrap;
|
| 56 |
-
width: 500px;
|
| 57 |
-
max-width: 500px;
|
| 58 |
-
z-index: 1;
|
| 59 |
-
background-color: #f9f9f9;
|
| 60 |
-
color: #000;
|
| 61 |
-
border: 1px solid #ddd;
|
| 62 |
-
border-radius: 5px;
|
| 63 |
-
padding: 5px;
|
| 64 |
-
display: block;
|
| 65 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
| 66 |
-
}
|
| 67 |
-
.deleted {
|
| 68 |
-
background-color: #ffcccb;
|
| 69 |
-
text-decoration: line-through;
|
| 70 |
-
}
|
| 71 |
.inserted {
|
| 72 |
background-color: #90EE90;
|
| 73 |
}
|
| 74 |
-
.manuscript {
|
| 75 |
-
display: flex;
|
| 76 |
-
margin-bottom: 10px;
|
| 77 |
-
align-items: baseline;
|
| 78 |
-
}
|
| 79 |
-
.annotation {
|
| 80 |
-
width: 15%;
|
| 81 |
-
padding-right: 20px;
|
| 82 |
-
color: grey !important;
|
| 83 |
-
font-style: italic;
|
| 84 |
-
text-align: right;
|
| 85 |
-
}
|
| 86 |
-
.content {
|
| 87 |
-
width: 80%;
|
| 88 |
-
}
|
| 89 |
-
h2 {
|
| 90 |
-
margin: 0;
|
| 91 |
-
font-size: 1.5em;
|
| 92 |
-
}
|
| 93 |
-
.title-content h2 {
|
| 94 |
-
font-weight: bold;
|
| 95 |
-
}
|
| 96 |
-
.bibliography-content {
|
| 97 |
-
color: darkgreen !important;
|
| 98 |
-
margin-top: -5px;
|
| 99 |
-
}
|
| 100 |
-
.paratext-content {
|
| 101 |
-
color: #a4a4a4 !important;
|
| 102 |
-
margin-top: -5px;
|
| 103 |
-
}
|
| 104 |
</style>
|
| 105 |
"""
|
| 106 |
|
| 107 |
-
# Helper functions
|
| 108 |
def generate_html_diff(old_text, new_text):
|
| 109 |
d = difflib.Differ()
|
| 110 |
diff = list(d.compare(old_text.split(), new_text.split()))
|
|
@@ -113,64 +37,31 @@ def generate_html_diff(old_text, new_text):
|
|
| 113 |
if word.startswith(' '):
|
| 114 |
html_diff.append(word[2:])
|
| 115 |
elif word.startswith('+ '):
|
| 116 |
-
html_diff.append(f'<span
|
| 117 |
return ' '.join(html_diff)
|
| 118 |
|
| 119 |
-
def
|
| 120 |
-
|
| 121 |
-
text = re.sub(r'\n', ' ', text)
|
| 122 |
-
text = re.sub(r'\s+', ' ', text)
|
| 123 |
-
return text.strip()
|
| 124 |
-
|
| 125 |
-
def split_text(text, max_tokens=500):
|
| 126 |
-
parts = text.split("\n")
|
| 127 |
chunks = []
|
| 128 |
-
current_chunk =
|
| 129 |
-
|
| 130 |
-
for part in parts:
|
| 131 |
-
if current_chunk:
|
| 132 |
-
temp_chunk = current_chunk + "\n" + part
|
| 133 |
-
else:
|
| 134 |
-
temp_chunk = part
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
if
|
| 139 |
-
current_chunk
|
| 140 |
-
|
| 141 |
-
if current_chunk:
|
| 142 |
-
chunks.append(current_chunk)
|
| 143 |
-
current_chunk = part
|
| 144 |
|
| 145 |
if current_chunk:
|
| 146 |
-
chunks.append(current_chunk)
|
| 147 |
-
|
| 148 |
-
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
|
| 149 |
-
long_text = chunks[0]
|
| 150 |
-
chunks = []
|
| 151 |
-
while len(tokenizer.tokenize(long_text)) > max_tokens:
|
| 152 |
-
split_point = len(long_text) // 2
|
| 153 |
-
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
|
| 154 |
-
split_point += 1
|
| 155 |
-
if split_point >= len(long_text):
|
| 156 |
-
split_point = len(long_text) - 1
|
| 157 |
-
chunks.append(long_text[:split_point].strip())
|
| 158 |
-
long_text = long_text[split_point:].strip()
|
| 159 |
-
if long_text:
|
| 160 |
-
chunks.append(long_text)
|
| 161 |
|
| 162 |
return chunks
|
| 163 |
|
| 164 |
-
|
| 165 |
-
# Function to generate text
|
| 166 |
def ocr_correction(prompt, max_new_tokens=600, num_threads=os.cpu_count()):
|
| 167 |
prompt = f"""### Text ###\n{prompt}\n\n\n### Correction ###\n"""
|
| 168 |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
| 169 |
|
| 170 |
-
# Set the number of threads for PyTorch
|
| 171 |
torch.set_num_threads(num_threads)
|
| 172 |
|
| 173 |
-
# Generate text
|
| 174 |
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
| 175 |
future = executor.submit(
|
| 176 |
model.generate,
|
|
@@ -183,41 +74,23 @@ def ocr_correction(prompt, max_new_tokens=600, num_threads=os.cpu_count()):
|
|
| 183 |
)
|
| 184 |
output = future.result()
|
| 185 |
|
| 186 |
-
# Decode and return the generated text
|
| 187 |
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
# OCR Correction Class
|
| 194 |
-
class OCRCorrector:
|
| 195 |
-
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
|
| 196 |
-
self.system_prompt = system_prompt
|
| 197 |
-
|
| 198 |
-
def correct(self, user_message):
|
| 199 |
-
generated_text = ocr_correction(user_message)
|
| 200 |
-
html_diff = generate_html_diff(user_message, generated_text)
|
| 201 |
-
return generated_text, html_diff
|
| 202 |
-
|
| 203 |
-
# Combined Processing Class
|
| 204 |
-
class TextProcessor:
|
| 205 |
-
def __init__(self):
|
| 206 |
-
self.ocr_corrector = OCRCorrector()
|
| 207 |
-
|
| 208 |
-
@spaces.GPU(duration=120)
|
| 209 |
-
def process(self, user_message):
|
| 210 |
-
#OCR Correction
|
| 211 |
-
corrected_text, html_diff = self.ocr_corrector.correct(user_message)
|
| 212 |
-
|
| 213 |
-
# Combine results
|
| 214 |
-
ocr_result = f'<h2 style="text-align:center">OCR Correction</h2>\n<div class="generation">{html_diff}</div>'
|
| 215 |
-
|
| 216 |
-
final_output = f"{css}{ocr_result}"
|
| 217 |
-
return final_output
|
| 218 |
-
|
| 219 |
-
# Create the TextProcessor instance
|
| 220 |
-
text_processor = TextProcessor()
|
| 221 |
|
| 222 |
# Define the Gradio interface
|
| 223 |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
|
@@ -225,7 +98,7 @@ with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
|
| 225 |
text_input = gr.Textbox(label="Your (bad?) text", type="text", lines=5)
|
| 226 |
process_button = gr.Button("Process Text")
|
| 227 |
text_output = gr.HTML(label="Processed text")
|
| 228 |
-
process_button.click(
|
| 229 |
|
| 230 |
if __name__ == "__main__":
|
| 231 |
demo.queue().launch()
|
|
|
|
|
|
|
| 1 |
import transformers
|
| 2 |
import re
|
| 3 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import difflib
|
| 7 |
from concurrent.futures import ThreadPoolExecutor
|
| 8 |
+
import os
|
| 9 |
|
| 10 |
# OCR Correction Model
|
| 11 |
+
model_name = "PleIAs/OCRonos-Vintage"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
|
| 14 |
# Load pre-trained model and tokenizer
|
| 15 |
+
model = GPT2LMHeadModel.from_pretrained(model_name).to(device)
|
|
|
|
| 16 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 17 |
|
| 18 |
# CSS for formatting
|
|
|
|
| 23 |
margin-right: 2em;
|
| 24 |
font-size: 1.2em;
|
| 25 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
.inserted {
|
| 27 |
background-color: #90EE90;
|
| 28 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
</style>
|
| 30 |
"""
|
| 31 |
|
|
|
|
| 32 |
def generate_html_diff(old_text, new_text):
|
| 33 |
d = difflib.Differ()
|
| 34 |
diff = list(d.compare(old_text.split(), new_text.split()))
|
|
|
|
| 37 |
if word.startswith(' '):
|
| 38 |
html_diff.append(word[2:])
|
| 39 |
elif word.startswith('+ '):
|
| 40 |
+
html_diff.append(f'<span class="inserted">{word[2:]}</span>')
|
| 41 |
return ' '.join(html_diff)
|
| 42 |
|
| 43 |
+
def split_text(text, max_tokens=400):
|
| 44 |
+
tokens = tokenizer.tokenize(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
chunks = []
|
| 46 |
+
current_chunk = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
for token in tokens:
|
| 49 |
+
current_chunk.append(token)
|
| 50 |
+
if len(current_chunk) >= max_tokens:
|
| 51 |
+
chunks.append(tokenizer.convert_tokens_to_string(current_chunk))
|
| 52 |
+
current_chunk = []
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
if current_chunk:
|
| 55 |
+
chunks.append(tokenizer.convert_tokens_to_string(current_chunk))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
return chunks
|
| 58 |
|
|
|
|
|
|
|
| 59 |
def ocr_correction(prompt, max_new_tokens=600, num_threads=os.cpu_count()):
|
| 60 |
prompt = f"""### Text ###\n{prompt}\n\n\n### Correction ###\n"""
|
| 61 |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
| 62 |
|
|
|
|
| 63 |
torch.set_num_threads(num_threads)
|
| 64 |
|
|
|
|
| 65 |
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
| 66 |
future = executor.submit(
|
| 67 |
model.generate,
|
|
|
|
| 74 |
)
|
| 75 |
output = future.result()
|
| 76 |
|
|
|
|
| 77 |
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 78 |
+
return result.split("### Correction ###")[1].strip()
|
| 79 |
+
|
| 80 |
+
def process_text(user_message):
|
| 81 |
+
chunks = split_text(user_message)
|
| 82 |
+
corrected_chunks = []
|
| 83 |
+
|
| 84 |
+
for chunk in chunks:
|
| 85 |
+
corrected_chunk = ocr_correction(chunk)
|
| 86 |
+
corrected_chunks.append(corrected_chunk)
|
| 87 |
+
|
| 88 |
+
corrected_text = ' '.join(corrected_chunks)
|
| 89 |
+
html_diff = generate_html_diff(user_message, corrected_text)
|
| 90 |
|
| 91 |
+
ocr_result = f'<h2 style="text-align:center">OCR Correction</h2>\n<div class="generation">{html_diff}</div>'
|
| 92 |
+
final_output = f"{css}{ocr_result}"
|
| 93 |
+
return final_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
# Define the Gradio interface
|
| 96 |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
|
|
|
| 98 |
text_input = gr.Textbox(label="Your (bad?) text", type="text", lines=5)
|
| 99 |
process_button = gr.Button("Process Text")
|
| 100 |
text_output = gr.HTML(label="Processed text")
|
| 101 |
+
process_button.click(process_text, inputs=text_input, outputs=[text_output])
|
| 102 |
|
| 103 |
if __name__ == "__main__":
|
| 104 |
demo.queue().launch()
|