Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| import warnings | |
| from pathlib import Path | |
| import argbind | |
| import numpy as np | |
| import torch | |
| from audiotools import AudioSignal | |
| from audiotools.core import util | |
| from tqdm import tqdm | |
| from dac.utils import load_model | |
| warnings.filterwarnings("ignore", category=UserWarning) | |
| def encode( | |
| input: str, | |
| output: str = "", | |
| weights_path: str = "", | |
| model_tag: str = "latest", | |
| model_bitrate: str = "8kbps", | |
| n_quantizers: int = None, | |
| device: str = "cuda", | |
| model_type: str = "44khz", | |
| win_duration: float = 5.0, | |
| verbose: bool = False, | |
| ): | |
| """Encode audio files in input path to .dac format. | |
| Parameters | |
| ---------- | |
| input : str | |
| Path to input audio file or directory | |
| output : str, optional | |
| Path to output directory, by default "". If `input` is a directory, the directory sub-tree relative to `input` is re-created in `output`. | |
| weights_path : str, optional | |
| Path to weights file, by default "". If not specified, the weights file will be downloaded from the internet using the | |
| model_tag and model_type. | |
| model_tag : str, optional | |
| Tag of the model to use, by default "latest". Ignored if `weights_path` is specified. | |
| model_bitrate: str | |
| Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps". | |
| n_quantizers : int, optional | |
| Number of quantizers to use, by default None. If not specified, all the quantizers will be used and the model will compress at maximum bitrate. | |
| device : str, optional | |
| Device to use, by default "cuda" | |
| model_type : str, optional | |
| The type of model to use. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz". Ignored if `weights_path` is specified. | |
| """ | |
| generator = load_model( | |
| model_type=model_type, | |
| model_bitrate=model_bitrate, | |
| tag=model_tag, | |
| load_path=weights_path, | |
| ) | |
| generator.to(device) | |
| generator.eval() | |
| kwargs = {"n_quantizers": n_quantizers} | |
| # Find all audio files in input path | |
| input = Path(input) | |
| audio_files = util.find_audio(input) | |
| output = Path(output) | |
| output.mkdir(parents=True, exist_ok=True) | |
| for i in tqdm(range(len(audio_files)), desc="Encoding files"): | |
| # Load file | |
| signal = AudioSignal(audio_files[i]) | |
| # Encode audio to .dac format | |
| artifact = generator.compress(signal, win_duration, verbose=verbose, **kwargs) | |
| # Compute output path | |
| relative_path = audio_files[i].relative_to(input) | |
| output_dir = output / relative_path.parent | |
| if not relative_path.name: | |
| output_dir = output | |
| relative_path = audio_files[i] | |
| output_name = relative_path.with_suffix(".dac").name | |
| output_path = output_dir / output_name | |
| output_path.parent.mkdir(parents=True, exist_ok=True) | |
| artifact.save(output_path) | |
| if __name__ == "__main__": | |
| args = argbind.parse_args() | |
| with argbind.scope(args): | |
| encode() | |