Spaces:
Runtime error
Runtime error
Commit
·
ad569d5
1
Parent(s):
2a2c118
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
| 4 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 5 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 6 |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
| 7 |
import lora
|
|
@@ -26,12 +27,19 @@ with open("sdxl_loras.json", "r") as file:
|
|
| 26 |
}
|
| 27 |
for item in data
|
| 28 |
]
|
| 29 |
-
print(sdxl_loras)
|
| 30 |
-
saved_names = [
|
| 31 |
-
hf_hub_download(item["repo"], item["weights"]) for item in sdxl_loras
|
| 32 |
-
]
|
| 33 |
|
| 34 |
-
device = "cuda"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
vae = AutoencoderKL.from_pretrained(
|
| 37 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
|
@@ -40,14 +48,13 @@ pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
| 40 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 41 |
vae=vae,
|
| 42 |
torch_dtype=torch.float16,
|
| 43 |
-
)
|
| 44 |
original_pipe = copy.deepcopy(pipe)
|
| 45 |
pipe.to(device)
|
| 46 |
|
| 47 |
last_lora = ""
|
| 48 |
last_merged = False
|
| 49 |
|
| 50 |
-
|
| 51 |
def update_selection(selected_state: gr.SelectData):
|
| 52 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 53 |
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
|
|
@@ -128,7 +135,7 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
| 128 |
del lora_model
|
| 129 |
gc.collect()
|
| 130 |
|
| 131 |
-
def run_lora(prompt, negative, lora_scale, selected_state):
|
| 132 |
global last_lora, last_merged, pipe
|
| 133 |
|
| 134 |
if negative == "":
|
|
@@ -138,7 +145,8 @@ def run_lora(prompt, negative, lora_scale, selected_state):
|
|
| 138 |
raise gr.Error("You must select a LoRA")
|
| 139 |
repo_name = sdxl_loras[selected_state.index]["repo"]
|
| 140 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
| 141 |
-
full_path_lora =
|
|
|
|
| 142 |
cross_attention_kwargs = None
|
| 143 |
if last_lora != repo_name:
|
| 144 |
if last_merged:
|
|
@@ -148,17 +156,17 @@ def run_lora(prompt, negative, lora_scale, selected_state):
|
|
| 148 |
pipe.to(device)
|
| 149 |
else:
|
| 150 |
pipe.unload_lora_weights()
|
|
|
|
| 151 |
is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
|
| 152 |
if is_compatible:
|
| 153 |
-
pipe.load_lora_weights(
|
| 154 |
-
|
| 155 |
else:
|
| 156 |
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
|
| 157 |
if(is_pivotal):
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
pipe.load_lora_weights(full_path_lora)
|
| 160 |
-
cross_attention_kwargs = {"scale": lora_scale}
|
| 161 |
-
|
| 162 |
#Add the textual inversion embeddings from pivotal tuning models
|
| 163 |
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
|
| 164 |
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
|
|
@@ -177,7 +185,6 @@ def run_lora(prompt, negative, lora_scale, selected_state):
|
|
| 177 |
height=768,
|
| 178 |
num_inference_steps=20,
|
| 179 |
guidance_scale=7.5,
|
| 180 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
| 181 |
).images[0]
|
| 182 |
last_lora = repo_name
|
| 183 |
gc.collect()
|
|
|
|
| 2 |
import torch
|
| 3 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
+
from safetensors.torch import load_file
|
| 6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 7 |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
| 8 |
import lora
|
|
|
|
| 27 |
}
|
| 28 |
for item in data
|
| 29 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
device = "cuda"
|
| 32 |
+
|
| 33 |
+
for item in sdxl_loras:
|
| 34 |
+
saved_name = hf_hub_download(item["repo"], item["weights"])
|
| 35 |
+
|
| 36 |
+
if not saved_name.endswith('.safetensors'):
|
| 37 |
+
state_dict = torch.load(saved_name)
|
| 38 |
+
else:
|
| 39 |
+
state_dict = load_file(saved_name)
|
| 40 |
+
|
| 41 |
+
item["saved_name"] = saved_name
|
| 42 |
+
item["state_dict"] = state_dict #{k: v.to(device=device, dtype=torch.float16) for k, v in state_dict.items() if torch.is_tensor(v)}
|
| 43 |
|
| 44 |
vae = AutoencoderKL.from_pretrained(
|
| 45 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
|
|
|
| 48 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 49 |
vae=vae,
|
| 50 |
torch_dtype=torch.float16,
|
| 51 |
+
)
|
| 52 |
original_pipe = copy.deepcopy(pipe)
|
| 53 |
pipe.to(device)
|
| 54 |
|
| 55 |
last_lora = ""
|
| 56 |
last_merged = False
|
| 57 |
|
|
|
|
| 58 |
def update_selection(selected_state: gr.SelectData):
|
| 59 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 60 |
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
|
|
|
|
| 135 |
del lora_model
|
| 136 |
gc.collect()
|
| 137 |
|
| 138 |
+
def run_lora(prompt, negative, lora_scale, selected_state, progress=gr.Progress(track_tqdm=True)):
|
| 139 |
global last_lora, last_merged, pipe
|
| 140 |
|
| 141 |
if negative == "":
|
|
|
|
| 145 |
raise gr.Error("You must select a LoRA")
|
| 146 |
repo_name = sdxl_loras[selected_state.index]["repo"]
|
| 147 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
| 148 |
+
full_path_lora = sdxl_loras[selected_state.index]["saved_name"]
|
| 149 |
+
loaded_state_dict = sdxl_loras[selected_state.index]["state_dict"]
|
| 150 |
cross_attention_kwargs = None
|
| 151 |
if last_lora != repo_name:
|
| 152 |
if last_merged:
|
|
|
|
| 156 |
pipe.to(device)
|
| 157 |
else:
|
| 158 |
pipe.unload_lora_weights()
|
| 159 |
+
pipe.unfuse_lora()
|
| 160 |
is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
|
| 161 |
if is_compatible:
|
| 162 |
+
pipe.load_lora_weights(loaded_state_dict)
|
| 163 |
+
pipe.fuse_lora(lora_scale)
|
| 164 |
else:
|
| 165 |
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
|
| 166 |
if(is_pivotal):
|
| 167 |
+
pipe.load_lora_weights(loaded_state_dict)
|
| 168 |
+
pipe.fuse_lora(lora_scale)
|
| 169 |
|
|
|
|
|
|
|
|
|
|
| 170 |
#Add the textual inversion embeddings from pivotal tuning models
|
| 171 |
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
|
| 172 |
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
|
|
|
|
| 185 |
height=768,
|
| 186 |
num_inference_steps=20,
|
| 187 |
guidance_scale=7.5,
|
|
|
|
| 188 |
).images[0]
|
| 189 |
last_lora = repo_name
|
| 190 |
gc.collect()
|