Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
|
4 |
+
# Load your model from Hugging Face Hub
|
5 |
+
MODEL_NAME = "Pisethan/sangapac-math"
|
6 |
+
reverse_label_mapping = {
|
7 |
+
0: "arithmetic",
|
8 |
+
1: "multiplication",
|
9 |
+
2: "division",
|
10 |
+
3: "algebra",
|
11 |
+
4: "geometry",
|
12 |
+
}
|
13 |
+
|
14 |
+
# Load tokenizer and model
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
16 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
17 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
18 |
+
|
19 |
+
def predict(input_text):
|
20 |
+
# Predict using the model
|
21 |
+
result = classifier(input_text)
|
22 |
+
label_id = int(result[0]["label"].split("_")[-1]) # Extract label ID
|
23 |
+
category = reverse_label_mapping[label_id] # Map label to category
|
24 |
+
|
25 |
+
# Return prediction result
|
26 |
+
return {
|
27 |
+
"Category": category,
|
28 |
+
"Confidence": result[0]["score"],
|
29 |
+
}
|
30 |
+
|
31 |
+
# Gradio interface
|
32 |
+
interface = gr.Interface(
|
33 |
+
fn=predict,
|
34 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter a math problem..."),
|
35 |
+
outputs="json",
|
36 |
+
title="Sangapac Math Model",
|
37 |
+
description="A model to classify math problems into categories like Arithmetic, Multiplication, Division, Algebra, and Geometry.",
|
38 |
+
)
|
39 |
+
|
40 |
+
# Launch the app
|
41 |
+
interface.launch()
|