Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
+
|
| 6 |
+
id2label = {0: 'anger', 1: 'anticipation', 2: 'disgust', 3: 'fear', 4: 'joy', 5: 'love', 6: 'optimism', 7: 'pessimism', 8: 'sadness', 9: 'surprise', 10: 'trust'}
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("winain7788/bert-finetuned-sem_eval-english")
|
| 8 |
+
model = AutoModelForSequenceClassification.from_pretrained("winain7788/bert-finetuned-sem_eval-english")
|
| 9 |
+
|
| 10 |
+
async def get_sentiment(text):
|
| 11 |
+
encoding = tokenizer(text, return_tensors="pt")
|
| 12 |
+
encoding = {k: v.to(model.device) for k,v in encoding.items()}
|
| 13 |
+
|
| 14 |
+
outputs = model(**encoding)
|
| 15 |
+
logits = outputs.logits
|
| 16 |
+
logits.shape
|
| 17 |
+
# apply sigmoid + threshold
|
| 18 |
+
sigmoid = torch.nn.Sigmoid()
|
| 19 |
+
probs = sigmoid(logits.squeeze().cpu())
|
| 20 |
+
predictions = np.zeros(probs.shape)
|
| 21 |
+
predictions[np.where(probs >= 0.5)] = 1
|
| 22 |
+
|
| 23 |
+
# turn predicted id's into actual label names
|
| 24 |
+
predicted_labels = [id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]
|
| 25 |
+
return predicted_labels
|
| 26 |
+
|
| 27 |
+
demo = gr.Interface(fn=get_sentiment, inputs="text", outputs="json")
|
| 28 |
+
|
| 29 |
+
demo.launch()
|