Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import gradio as gr | |
| import subprocess | |
| import json | |
| import torch | |
| from pathlib import Path | |
| # Set environment variables for HF Spaces | |
| os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0" | |
| os.environ["GRADIO_SERVER_PORT"] = "7860" | |
| # Pre-download models cache | |
| os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache" | |
| os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/hf_cache" | |
| # Fix potential Hunyuan Video Avatar issues | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512" | |
| def setup_environment(): | |
| """Setup environment for HF Spaces with WanGP v6.3""" | |
| # Install additional dependencies if needed | |
| dependencies = [ | |
| "sageattention==1.0.6", | |
| "insightface", | |
| "facexlib", | |
| "diffusers>=0.30.0", | |
| "transformers>=4.44.0", | |
| "accelerate>=0.34.0", | |
| "xformers", | |
| "opencv-python", | |
| "imageio[ffmpeg]", | |
| "moviepy", | |
| "librosa", | |
| "soundfile" | |
| ] | |
| for dep in dependencies: | |
| try: | |
| module_name = dep.split("==")[0].split(">=")[0] | |
| __import__(module_name.replace("-", "_")) | |
| except ImportError: | |
| print(f"Installing {dep}...") | |
| subprocess.run([sys.executable, "-m", "pip", "install", dep], | |
| check=True, capture_output=True) | |
| def download_essential_models(): | |
| """Pre-download essential models for faster startup""" | |
| try: | |
| from huggingface_hub import snapshot_download | |
| print("Downloading Hunyuan Video Avatar models...") | |
| # Download Hunyuan Video Avatar base models | |
| snapshot_download( | |
| repo_id="tencent/HunyuanVideo-Avatar", | |
| cache_dir="/tmp/hf_cache", | |
| allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"], | |
| ignore_patterns=["*.mp4", "*.avi", "*.mov"] # Skip demo videos | |
| ) | |
| # Download base Hunyuan Video model | |
| snapshot_download( | |
| repo_id="tencent/HunyuanVideo", | |
| cache_dir="/tmp/hf_cache", | |
| allow_patterns=["*.safetensors", "*.json", "*.txt"], | |
| ignore_patterns=["*.mp4", "*.avi"] | |
| ) | |
| print("✅ Models downloaded successfully!") | |
| except Exception as e: | |
| print(f"Model download warning: {e}") | |
| print("Models will be downloaded on-demand during first use.") | |
| def create_hf_config(): | |
| """Create optimized config for HF Spaces deployment""" | |
| config = { | |
| "model_settings": { | |
| "profile": 3, # Optimized for A10G Large | |
| "quantize_transformer": True, | |
| "attention_mode": "sage", | |
| "compile": False, # Disable for stability on HF | |
| "teacache": "2.0" | |
| }, | |
| "avatar_settings": { | |
| "max_frames": 120, # ~5 seconds at 24fps | |
| "resolution": "512x512", # Balanced quality/performance | |
| "emotion_control": True, | |
| "multi_character": True | |
| }, | |
| "memory_optimization": { | |
| "enable_vae_tiling": True, | |
| "enable_cpu_offload": True, | |
| "max_batch_size": 1, | |
| "gradient_checkpointing": True | |
| }, | |
| "audio_processing": { | |
| "sample_rate": 16000, | |
| "max_duration": 15, # seconds | |
| "supported_formats": ["wav", "mp3", "m4a"] | |
| } | |
| } | |
| config_path = "/tmp/hf_config.json" | |
| with open(config_path, "w") as f: | |
| json.dump(config, f, indent=2) | |
| return config | |
| class WanGPInterface: | |
| """WanGP Interface for HF Spaces""" | |
| def __init__(self, config): | |
| self.config = config | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| self.models_loaded = False | |
| def load_models(self): | |
| """Load models on demand""" | |
| if self.models_loaded: | |
| return | |
| try: | |
| print("Loading Hunyuan Video Avatar models...") | |
| # Model loading logic would go here | |
| # This is a placeholder for the actual model loading | |
| self.models_loaded = True | |
| print("✅ Models loaded successfully!") | |
| except Exception as e: | |
| print(f"❌ Error loading models: {e}") | |
| raise e | |
| def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"): | |
| try: | |
| self.load_models() | |
| # Gọi model thật để sinh video từ ảnh và audio | |
| output_video_path = "/tmp/generated_avatar.mp4" | |
| # TODO: thay bằng đoạn code gọi mô hình HunyuanAvatar thực sự | |
| # Giả sử video đã được lưu vào `output_video_path` | |
| return output_video_path, "✅ Video generated successfully!" | |
| except Exception as e: | |
| return None, f"❌ Error: {str(e)}" | |
| def generate_video(self, prompt, duration=5, resolution="512x512"): | |
| """Generate video from text prompt""" | |
| try: | |
| self.load_models() | |
| # Placeholder for video generation logic | |
| return f"Generated video for prompt: {prompt}" | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| def create_gradio_interface(wangp_interface): | |
| """Create Gradio interface for WanGP""" | |
| with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo: | |
| gr.HTML(""" | |
| <div style="text-align: center; margin-bottom: 20px;"> | |
| <h1>🎭 WanGP v6.3 - Hunyuan Video Avatar</h1> | |
| <p>Advanced AI Video Generation with Audio-Driven Human Animation</p> | |
| </div> | |
| """) | |
| with gr.Tabs(): | |
| # Avatar Generation Tab | |
| with gr.TabItem("🎭 Avatar Generation"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| audio_input = gr.Audio( | |
| label="Audio Input", | |
| type="filepath", | |
| format="wav" | |
| ) | |
| avatar_image = gr.Image( | |
| label="Avatar Image", | |
| type="filepath" | |
| ) | |
| emotion_control = gr.Dropdown( | |
| choices=["neutral", "happy", "sad", "angry", "surprised"], | |
| value="neutral", | |
| label="Emotion Control" | |
| ) | |
| avatar_prompt = gr.Textbox( | |
| label="Additional Prompt (Optional)", | |
| placeholder="Describe additional details..." | |
| ) | |
| generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary") | |
| with gr.Column(): | |
| avatar_output = gr.Video(label="Generated Avatar Video") | |
| avatar_status = gr.Textbox(label="Status", interactive=False) | |
| # Text-to-Video Tab | |
| with gr.TabItem("📹 Text to Video"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| video_prompt = gr.Textbox( | |
| label="Video Prompt", | |
| placeholder="Describe the video you want to generate...", | |
| lines=3 | |
| ) | |
| duration_slider = gr.Slider( | |
| minimum=2, | |
| maximum=10, | |
| value=5, | |
| step=1, | |
| label="Duration (seconds)" | |
| ) | |
| resolution_dropdown = gr.Dropdown( | |
| choices=["512x512", "768x768", "1024x1024"], | |
| value="512x512", | |
| label="Resolution" | |
| ) | |
| generate_video_btn = gr.Button("Generate Video", variant="primary") | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated Video") | |
| video_status = gr.Textbox(label="Status", interactive=False) | |
| # Event handlers | |
| generate_avatar_btn.click( | |
| fn=wangp_interface.generate_avatar_video, | |
| inputs=[audio_input, avatar_image, avatar_prompt, emotion_control], | |
| outputs=[avatar_output, avatar_status] # trả ra cả video và status | |
| ) | |
| generate_video_btn.click( | |
| fn=wangp_interface.generate_video, | |
| inputs=[video_prompt, duration_slider, resolution_dropdown], | |
| outputs=[video_status] | |
| ) | |
| gr.HTML(""" | |
| <div style="text-align: center; margin-top: 20px; color: #666;"> | |
| <p>Powered by Hunyuan Video Avatar & WanGP v6.3</p> | |
| </div> | |
| """) | |
| return demo | |
| if __name__ == "__main__": | |
| print("🚀 Starting WanGP v6.3 with Hunyuan Video Avatar...") | |
| # Setup environment | |
| setup_environment() | |
| # Create configuration | |
| config = create_hf_config() | |
| # Download models in background | |
| try: | |
| download_essential_models() | |
| except Exception as e: | |
| print(f"Model download failed: {e}") | |
| # Initialize WanGP interface | |
| wangp_interface = WanGPInterface(config) | |
| # Create and launch Gradio interface | |
| demo = create_gradio_interface(wangp_interface) | |
| print("✅ Setup complete! Launching application...") | |
| demo.launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=False, # HF Spaces handles sharing | |
| debug=False, | |
| show_error=True | |
| ) |