Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import torch | |
# Paths to the saved model and tokenizer | |
model_path = "path_to_save_model" | |
tokenizer_path = "path_to_save_tokenizer" | |
# Load the model and tokenizer from the Hugging Face Hub | |
model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) | |
# Function to predict the sentiment | |
def predict_sentiment(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
return torch.argmax(probs, dim=-1).item(), probs | |
# Streamlit interface | |
st.title("KIWI Classifier") | |
st.write("Enter a question or statement to classify:") | |
user_input = st.text_area("Your input", "") | |
if st.button("Classify"): | |
if user_input: | |
label, probabilities = predict_sentiment(user_input) | |
st.write(f"Prediction: {label}") | |
st.write(f"Probabilities: {probabilities.tolist()}") | |
else: | |
st.write("Please enter some text to classify.") | |
# Additional instructions or information | |
st.write("This application uses a fine-tuned BERT model to classify questions and statements.") | |