Shreyansh-HackRx / main.py
PercivalFletcher's picture
Update main.py
5ccaf15 verified
raw
history blame
9.42 kB
import os
import json
import tempfile
import requests
from fastapi import FastAPI, HTTPException, Depends, status
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel
from typing import List, Dict, Union, Any, Optional
from dotenv import load_dotenv
import asyncio
import httpx
import time
from urllib.parse import urlparse, unquote
import uuid
import re
# Import LangChain Document and text splitter
from langchain_core.documents import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from processing_utility import (
extract_schema_from_file,
#initialize_llama_extract_agent,
process_document,
download_and_parse_document_using_llama_index,
)
# Import the new classes and functions from rag_utils
from rag_utils import (
process_markdown_with_manual_sections,
generate_answer_with_groq,
HybridSearchManager,
EmbeddingClient, # This might not be needed directly in main.py, but good to have
CHUNK_SIZE,
CHUNK_OVERLAP,
TOP_K_CHUNKS,
GROQ_MODEL_NAME,
)
load_dotenv()
# --- FastAPI App Initialization ---
app = FastAPI(
title="HackRX RAG API",
description="API for Retrieval-Augmented Generation from PDF documents.",
version="1.0.0",
)
# --- Global instance for the HybridSearchManager ---
# This will be initialized on startup
hybrid_search_manager: Optional[HybridSearchManager] = None
@app.on_event("startup")
async def startup_event():
global hybrid_search_manager
# Initialize the HybridSearchManager at startup
hybrid_search_manager = HybridSearchManager()
#initialize_llama_extract_agent() # From processing_utility
print("Application startup complete. HybridSearchManager is ready.")
# --- Groq API Key Setup ---
GROQ_API_KEY = os.environ.get("GROQ_API_KEY", "NOT_FOUND")
if GROQ_API_KEY == "NOT_FOUND":
print(
"WARNING: GROQ_API_KEY is using a placeholder or hardcoded value. Please set GROQ_API_KEY environment variable for production."
)
# --- Authorization Token Setup ---
# EXPECTED_AUTH_TOKEN = os.getenv("AUTHORIZATION_TOKEN")
# if not EXPECTED_AUTH_TOKEN:
# print(
# "WARNING: AUTHORIZATION_TOKEN environment variable is not set. Authorization will not work as expected."
# )
# --- Pydantic Models for Request and Response ---
class RunRequest(BaseModel):
documents: str # URL to the PDF document
questions: List[str]
class Answer(BaseModel):
answer: str
class RunResponse(BaseModel):
answers: List[str]
#processing_time: float
#step_timings: dict # New field for detailed timings
# --- Security Dependency ---
security = HTTPBearer()
# async def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
# """
# Verifies the Bearer token in the Authorization header.
# """
# if not EXPECTED_AUTH_TOKEN:
# raise HTTPException(
# status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
# detail="Authorization token not configured on the server.",
# )
# if credentials.scheme != "Bearer" or credentials.credentials != EXPECTED_AUTH_TOKEN:
# raise HTTPException(
# status_code=status.HTTP_401_UNAUTHORIZED,
# detail="Invalid or missing authentication token",
# headers={"WWW-Authenticate": "Bearer"},
# )
# return True
@app.post("/hackrx/run", response_model=RunResponse)
async def run_rag_pipeline(
request: RunRequest,
# authorized: bool = Depends(verify_token)
):
"""
Runs the RAG pipeline for a given PDF document (converted to Markdown internally)
and a list of questions.
"""
pdf_url = request.documents
questions = request.questions
local_markdown_path = None
step_timings = {}
start_time_total = time.perf_counter()
try:
# Ensure the HybridSearchManager is initialized
if hybrid_search_manager is None:
raise HTTPException(
status_code=500, detail="HybridSearchManager not initialized."
)
# 1. Parsing: Download PDF and parse to Markdown
start_time = time.perf_counter()
markdown_content = await download_and_parse_document_using_llama_index(pdf_url)
with tempfile.NamedTemporaryFile(
mode="w", delete=False, encoding="utf-8", suffix=".md"
) as temp_md_file:
temp_md_file.write(markdown_content)
local_markdown_path = temp_md_file.name
end_time = time.perf_counter()
step_timings["parsing_to_markdown"] = end_time - start_time
print(
f"Parsing to Markdown took {step_timings['parsing_to_markdown']:.2f} seconds."
)
# 2. Headings Generation: Extract headings JSON
'''start_time = time.perf_counter()
headings_json = extract_schema_from_file(local_markdown_path)
if not headings_json or not headings_json.get("headings"):
raise HTTPException(
status_code=400,
detail="Could not retrieve valid headings from the provided document.",
)
end_time = time.perf_counter()
step_timings["headings_generation"] = end_time - start_time
print(
f"Headings Generation took {step_timings['headings_generation']:.2f} seconds."
)'''
headings_json = {"headings":["p"]}
# 3. Chunk Generation: Process Markdown into chunks
start_time = time.perf_counter()
processed_documents = process_markdown_with_manual_sections(
local_markdown_path,
headings_json,
CHUNK_SIZE,
CHUNK_OVERLAP,
)
if not processed_documents:
raise HTTPException(
status_code=500, detail="Failed to process document into chunks."
)
end_time = time.perf_counter()
step_timings["chunk_generation"] = end_time - start_time
print(
f"Chunk Generation took {step_timings['chunk_generation']:.2f} seconds."
)
# 4. Model Initialization and Embeddings Pre-computation
start_time = time.perf_counter()
# --- FIX: Await the async function call ---
await hybrid_search_manager.initialize_models(processed_documents)
end_time = time.perf_counter()
step_timings["model_initialization"] = end_time - start_time
print(
f"Model initialization took {step_timings['model_initialization']:.2f} seconds."
)
# 5. Concurrent Query Processing (Search and Generation)
start_time_query_processing = time.perf_counter()
# Search Phase
batch_size = 3
all_retrieved_results = []
print(f"Starting concurrent search in batches of {batch_size}...")
for i in range(0, len(questions), batch_size):
current_batch_questions = questions[i : i + batch_size]
print(
f"Processing batch {i // batch_size + 1} with {len(current_batch_questions)} queries."
)
# --- FIX: Directly create a list of coroutines, no asyncio.to_thread needed here ---
search_tasks = [
hybrid_search_manager.perform_hybrid_search(
question, TOP_K_CHUNKS
)
for question in current_batch_questions
]
batch_results = await asyncio.gather(*search_tasks)
all_retrieved_results.extend(batch_results)
print("Search phase completed for all queries.")
# Generation Phase
print(f"Starting concurrent answer generation for {len(questions)} questions...")
generation_tasks = []
for question, retrieved_results in zip(questions, all_retrieved_results):
if retrieved_results:
generation_tasks.append(
generate_answer_with_groq(
question, retrieved_results, GROQ_API_KEY
)
)
else:
no_info_future = asyncio.Future()
no_info_future.set_result(
"No relevant information found in the document to answer this question."
)
generation_tasks.append(no_info_future)
all_answer_texts = await asyncio.gather(*generation_tasks)
end_time_query_processing = time.perf_counter()
step_timings["query_processing"] = (
end_time_query_processing - start_time_query_processing
)
print(
f"Total query processing took {step_timings['query_processing']:.2f} seconds."
)
end_time_total = time.perf_counter()
total_processing_time = end_time_total - start_time_total
print("All questions processed.")
all_answers = [answer_text for answer_text in all_answer_texts]
return RunResponse(
answers=all_answers
)
except HTTPException as e:
raise e
except Exception as e:
print(f"An unhandled error occurred: {e}")
raise HTTPException(
status_code=500, detail=f"An internal server error occurred: {e}"
)
finally:
if local_markdown_path and os.path.exists(local_markdown_path):
os.unlink(local_markdown_path)
print(f"Cleaned up temporary markdown file: {local_markdown_path}")