Spaces:
Sleeping
Sleeping
import time | |
from pathlib import Path | |
from typing import List, Any | |
import asyncio # Import asyncio for concurrent operations | |
from llama_index.core import Document, StorageContext, VectorStoreIndex, Settings | |
from llama_index.core.node_parser import HierarchicalNodeParser, get_leaf_nodes, get_root_nodes | |
from llama_index.core.retrievers import AutoMergingRetriever, BaseRetriever | |
from llama_index.core.storage.docstore import SimpleDocumentStore | |
from llama_index.readers.file import PyMuPDFReader | |
from llama_index.llms.groq import Groq | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
class Pipeline: | |
""" | |
A pipeline to process a PDF, create nodes, and generate embeddings. | |
It exposes a retriever to fetch nodes for a given query, | |
but does not handle the answer generation itself. The embedding | |
model is now passed in, not initialized internally. | |
""" | |
def __init__(self, groq_api_key: str, pdf_path: str, embed_model: HuggingFaceEmbedding): | |
""" | |
Initializes the pipeline with API keys, file path, and a pre-initialized embedding model. | |
Args: | |
groq_api_key (str): Your API key for Groq. | |
pdf_path (str): The path to the PDF file to be processed. | |
embed_model (HuggingFaceEmbedding): The pre-initialized embedding model. | |
""" | |
self.groq_api_key = groq_api_key | |
self.pdf_path = Path(pdf_path) | |
self.embed_model = embed_model | |
# Configure Llama-Index LLM setting only | |
Settings.llm = Groq(model="llama3-70b-8192", api_key=self.groq_api_key) | |
# Initialize components | |
self.documents: List[Document] = [] | |
self.nodes: List[Any] = [] | |
self.storage_context: StorageContext | None = None | |
self.index: VectorStoreIndex | None = None | |
self.retriever: BaseRetriever | None = None | |
self.leaf_nodes: List[Any] = [] | |
self.root_nodes: List[Any] = [] | |
def _parse_pdf(self) -> None: | |
"""Parses the PDF file into Llama-Index Document objects.""" | |
print(f"Parsing PDF at: {self.pdf_path}") | |
start_time = time.perf_counter() | |
loader = PyMuPDFReader() | |
docs = loader.load(file_path=self.pdf_path) | |
# Concatenate all document parts into a single document for simpler processing | |
# Adjust this if you need to maintain per-page document context | |
doc_text = "\n\n".join([d.get_content() for d in docs]) | |
self.documents = [Document(text=doc_text)] | |
end_time = time.perf_counter() | |
print(f"PDF parsing completed in {end_time - start_time:.2f} seconds.") | |
def _create_nodes(self) -> None: | |
"""Creates hierarchical nodes from the parsed documents.""" | |
print("Creating nodes from documents...") | |
start_time = time.perf_counter() | |
node_parser = HierarchicalNodeParser.from_defaults() | |
self.nodes = node_parser.get_nodes_from_documents(self.documents) | |
self.leaf_nodes = get_leaf_nodes(self.nodes) | |
self.root_nodes = get_root_nodes(self.nodes) | |
end_time = time.perf_counter() | |
print(f"Node creation completed in {end_time - start_time:.2f} seconds.") | |
async def _generate_embeddings_concurrently(self) -> None: | |
""" | |
Generates embeddings for leaf nodes concurrently using asyncio.to_thread | |
and then builds the VectorStoreIndex. | |
""" | |
print("Generating embeddings for leaf nodes concurrently...") | |
start_time_embeddings = time.perf_counter() | |
# Define a batch size for sending texts to the embedding model | |
# Adjust this based on your system's memory and CPU/GPU capabilities | |
BATCH_SIZE = 300 | |
embedding_tasks = [] | |
# Extract text content from leaf nodes | |
node_texts = [node.get_content() for node in self.leaf_nodes] | |
# Create batches of texts and schedule embedding generation in separate threads | |
for i in range(0, len(node_texts), BATCH_SIZE): | |
batch_texts = node_texts[i : i + BATCH_SIZE] | |
# Use asyncio.to_thread to run the synchronous embedding model call in a separate thread | |
# This prevents blocking the main event loop | |
embedding_tasks.append(asyncio.to_thread(self.embed_model.get_text_embedding_batch, texts=batch_texts, show_progress=False)) | |
# Wait for all concurrent embedding tasks to complete | |
all_embeddings_batches = await asyncio.gather(*embedding_tasks) | |
# Flatten the list of lists of embeddings into a single list | |
flat_embeddings = [emb for sublist in all_embeddings_batches for emb in sublist] | |
# Assign the generated embeddings back to their respective leaf nodes | |
for i, node in enumerate(self.leaf_nodes): | |
node.embedding = flat_embeddings[i] | |
end_time_embeddings = time.perf_counter() | |
print(f"Embeddings generated for {len(self.leaf_nodes)} nodes in {end_time_embeddings - start_time_embeddings:.2f} seconds.") | |
# Now, build the VectorStoreIndex using the nodes that now have pre-computed embeddings | |
print("Building VectorStoreIndex...") | |
start_time_index_build = time.perf_counter() | |
# Add all nodes (root and leaf) to the document store | |
docstore = SimpleDocumentStore() | |
docstore.add_documents(self.nodes) | |
self.storage_context = StorageContext.from_defaults(docstore=docstore) | |
# When nodes already have embeddings, VectorStoreIndex will use them | |
self.index = VectorStoreIndex( | |
self.leaf_nodes, # Pass leaf nodes which now contain their embeddings | |
storage_context=self.storage_context, | |
embed_model=self.embed_model # Still pass the embed_model, though it won't re-embed if nodes have embeddings | |
) | |
end_time_index_build = time.perf_counter() | |
print(f"VectorStoreIndex built in {end_time_index_build - start_time_index_build:.2f} seconds.") | |
print(f"Total index generation and embedding process completed in {end_time_index_build - start_time_embeddings:.2f} seconds.") | |
def _setup_retriever(self) -> None: | |
"""Sets up the retriever.""" | |
print("Setting up retriever...") | |
base_retriever = self.index.as_retriever(similarity_top_k=6) | |
self.retriever = AutoMergingRetriever( | |
base_retriever, storage_context=self.storage_context, verbose=True | |
) | |
async def run(self) -> None: | |
"""Runs the entire pipeline from parsing to retriever setup.""" | |
if not self.pdf_path.exists(): | |
raise FileNotFoundError(f"PDF file not found at: {self.pdf_path}") | |
self._parse_pdf() | |
self._create_nodes() | |
await self._generate_embeddings_concurrently() # Await the async embedding generation | |
self._setup_retriever() | |
print("Pipeline is ready for retrieval.") | |
def retrieve_nodes(self, query_str: str) -> List[dict]: | |
""" | |
Retrieves relevant nodes for a given query and converts them to a | |
list of dictionaries for external use. | |
Args: | |
query_str (str): The query string. | |
Returns: | |
List[dict]: A list of dictionaries with node content and metadata. | |
""" | |
if not self.retriever: | |
raise RuntimeError("Retriever is not initialized. Run the pipeline first.") | |
print(f"\nRetrieving nodes for query: '{query_str}'") | |
start_time = time.perf_counter() | |
# This is a synchronous call | |
nodes = self.retriever.retrieve(query_str) | |
end_time = time.perf_counter() | |
print(f"Retrieval completed in {end_time - start_time:.2f} seconds. Found {len(nodes)} nodes.") | |
# Convert the Llama-Index nodes to a dictionary format | |
retrieved_results = [ | |
{ | |
"content": n.text, | |
"document_metadata": n.metadata | |
} | |
for n in nodes | |
] | |
return retrieved_results |