Spaces:
Sleeping
Sleeping
| # file: main.py | |
| import time | |
| import os | |
| import asyncio | |
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel, HttpUrl | |
| from typing import List, Dict, Any | |
| from dotenv import load_dotenv | |
| # Assuming 'ingestion_router.py' is in the same directory and contains the function | |
| from ingestion_router import ingest_and_parse_document | |
| from chunking_parent import create_parent_child_chunks | |
| from embedding import EmbeddingClient | |
| from retrieval_parent import Retriever | |
| from generation import generate_answer | |
| load_dotenv() | |
| app = FastAPI( | |
| title="Modular RAG API", | |
| description="A modular API for Retrieval-Augmented Generation with Parent-Child Retrieval.", | |
| version="2.3.0", # Updated version | |
| ) | |
| GROQ_API_KEY = os.environ.get("GROQ_API_KEY") | |
| embedding_client = EmbeddingClient() | |
| retriever = Retriever(embedding_client=embedding_client) | |
| # --- Pydantic Models --- | |
| class RunRequest(BaseModel): | |
| documents: HttpUrl | |
| questions: List[str] | |
| class RunResponse(BaseModel): | |
| answers: List[str] | |
| class TestRequest(BaseModel): | |
| documents: HttpUrl | |
| # --- NEW: Test Endpoint for Ingestion and Parsing --- | |
| async def test_ingestion_endpoint(request: TestRequest): | |
| """ | |
| Tests the complete ingestion and parsing pipeline. | |
| Downloads a document from a URL, processes it using the modular | |
| parsing strategy (e.g., parallel for PDF, standard for DOCX), | |
| and returns the extracted Markdown content and time taken. | |
| """ | |
| print("--- Running Document Ingestion & Parsing Test ---") | |
| start_time = time.perf_counter() | |
| try: | |
| # Step 1: Call the main ingestion function from your router | |
| markdown_content = await ingest_and_parse_document(request.documents) | |
| end_time = time.perf_counter() | |
| duration = end_time - start_time | |
| print(f"--- Ingestion and Parsing took {duration:.2f} seconds ---") | |
| if not markdown_content: | |
| raise HTTPException( | |
| status_code=404, | |
| detail="Document processed, but no content was extracted." | |
| ) | |
| return { | |
| "total_time_seconds": duration, | |
| "character_count": len(markdown_content), | |
| "extracted_content": markdown_content, | |
| } | |
| except Exception as e: | |
| # Catch potential download errors, parsing errors, or unsupported file types | |
| raise HTTPException(status_code=500, detail=f"An error occurred during ingestion test: {str(e)}") | |
| # --- Test Endpoint for Parent-Child Chunking --- | |
| async def test_chunking_endpoint(request: TestRequest): | |
| """ | |
| Tests the parent-child chunking strategy. | |
| Returns parent chunks, child chunks, and the time taken. | |
| """ | |
| print("--- Running Parent-Child Chunking Test ---") | |
| start_time = time.perf_counter() | |
| try: | |
| # Step 1: Parse the document to get raw text | |
| markdown_content = await ingest_and_parse_document(request.documents) | |
| # Step 2: Create parent and child chunks | |
| child_documents, docstore, _ = create_parent_child_chunks(markdown_content) | |
| end_time = time.perf_counter() | |
| duration = end_time - start_time | |
| print(f"--- Parsing and Chunking took {duration:.2f} seconds ---") | |
| # Convert Document objects to a JSON-serializable list for the response | |
| child_chunk_results = [ | |
| {"page_content": doc.page_content, "metadata": doc.metadata} | |
| for doc in child_documents | |
| ] | |
| # Retrieve parent documents from the in-memory store | |
| parent_docs = docstore.mget(list(docstore.store.keys())) | |
| parent_chunk_results = [ | |
| {"page_content": doc.page_content, "metadata": doc.metadata} | |
| for doc in parent_docs if doc | |
| ] | |
| return { | |
| "total_time_seconds": duration, | |
| "parent_chunk_count": len(parent_chunk_results), | |
| "child_chunk_count": len(child_chunk_results), | |
| "parent_chunks": parent_chunk_results, | |
| "child_chunks": child_chunk_results, | |
| } | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=f"An error occurred during chunking test: {str(e)}") | |
| async def run_rag_pipeline(request: RunRequest): | |
| try: | |
| print("--- Kicking off RAG Pipeline with Parent-Child Strategy ---") | |
| # --- STAGE 1: DOCUMENT INGESTION --- | |
| markdown_content = await ingest_and_parse_document(request.documents) | |
| # --- STAGE 2: PARENT-CHILD CHUNKING --- | |
| child_documents, docstore, _ = create_parent_child_chunks(markdown_content) | |
| if not child_documents: | |
| raise HTTPException(status_code=400, detail="Document could not be processed into chunks.") | |
| # --- STAGE 3: INDEXING --- | |
| retriever.index(child_documents, docstore) | |
| # --- STAGE 4: CONCURRENT RETRIEVAL & GENERATION --- | |
| print("Starting retrieval for all questions...") | |
| retrieval_tasks = [ | |
| retriever.retrieve(q, GROQ_API_KEY) | |
| for q in request.questions | |
| ] | |
| all_retrieved_chunks = await asyncio.gather(*retrieval_tasks) | |
| print("Retrieval complete. Starting final answer generation...") | |
| answer_tasks = [ | |
| generate_answer(q, chunks, GROQ_API_KEY) | |
| for q, chunks in zip(request.questions, all_retrieved_chunks) | |
| ] | |
| final_answers = await asyncio.gather(*answer_tasks) | |
| print("--- RAG Pipeline Completed Successfully ---") | |
| return RunResponse(answers=final_answers) | |
| except Exception as e: | |
| raise HTTPException( | |
| status_code=500, detail=f"An internal server error occurred: {str(e)}" | |
| ) |