Spaces:
Running
on
L4
Running
on
L4
from typing import List, Iterable | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from matanyone.model.group_modules import MainToGroupDistributor, GroupResBlock, upsample_groups, GConv2d, downsample_groups | |
class UpsampleBlock(nn.Module): | |
def __init__(self, in_dim: int, out_dim: int, scale_factor: int = 2): | |
super().__init__() | |
self.out_conv = ResBlock(in_dim, out_dim) | |
self.scale_factor = scale_factor | |
def forward(self, in_g: torch.Tensor, skip_f: torch.Tensor) -> torch.Tensor: | |
g = F.interpolate(in_g, | |
scale_factor=self.scale_factor, | |
mode='bilinear') | |
g = self.out_conv(g) | |
g = g + skip_f | |
return g | |
class MaskUpsampleBlock(nn.Module): | |
def __init__(self, in_dim: int, out_dim: int, scale_factor: int = 2): | |
super().__init__() | |
self.distributor = MainToGroupDistributor(method='add') | |
self.out_conv = GroupResBlock(in_dim, out_dim) | |
self.scale_factor = scale_factor | |
def forward(self, in_g: torch.Tensor, skip_f: torch.Tensor) -> torch.Tensor: | |
g = upsample_groups(in_g, ratio=self.scale_factor) | |
g = self.distributor(skip_f, g) | |
g = self.out_conv(g) | |
return g | |
class DecoderFeatureProcessor(nn.Module): | |
def __init__(self, decoder_dims: List[int], out_dims: List[int]): | |
super().__init__() | |
self.transforms = nn.ModuleList([ | |
nn.Conv2d(d_dim, p_dim, kernel_size=1) for d_dim, p_dim in zip(decoder_dims, out_dims) | |
]) | |
def forward(self, multi_scale_features: Iterable[torch.Tensor]) -> List[torch.Tensor]: | |
outputs = [func(x) for x, func in zip(multi_scale_features, self.transforms)] | |
return outputs | |
# @torch.jit.script | |
def _recurrent_update(h: torch.Tensor, values: torch.Tensor) -> torch.Tensor: | |
# h: batch_size * num_objects * hidden_dim * h * w | |
# values: batch_size * num_objects * (hidden_dim*3) * h * w | |
dim = values.shape[2] // 3 | |
forget_gate = torch.sigmoid(values[:, :, :dim]) | |
update_gate = torch.sigmoid(values[:, :, dim:dim * 2]) | |
new_value = torch.tanh(values[:, :, dim * 2:]) | |
new_h = forget_gate * h * (1 - update_gate) + update_gate * new_value | |
return new_h | |
class SensoryUpdater_fullscale(nn.Module): | |
# Used in the decoder, multi-scale feature + GRU | |
def __init__(self, g_dims: List[int], mid_dim: int, sensory_dim: int): | |
super().__init__() | |
self.g16_conv = GConv2d(g_dims[0], mid_dim, kernel_size=1) | |
self.g8_conv = GConv2d(g_dims[1], mid_dim, kernel_size=1) | |
self.g4_conv = GConv2d(g_dims[2], mid_dim, kernel_size=1) | |
self.g2_conv = GConv2d(g_dims[3], mid_dim, kernel_size=1) | |
self.g1_conv = GConv2d(g_dims[4], mid_dim, kernel_size=1) | |
self.transform = GConv2d(mid_dim + sensory_dim, sensory_dim * 3, kernel_size=3, padding=1) | |
nn.init.xavier_normal_(self.transform.weight) | |
def forward(self, g: torch.Tensor, h: torch.Tensor) -> torch.Tensor: | |
g = self.g16_conv(g[0]) + self.g8_conv(downsample_groups(g[1], ratio=1/2)) + \ | |
self.g4_conv(downsample_groups(g[2], ratio=1/4)) + \ | |
self.g2_conv(downsample_groups(g[3], ratio=1/8)) + \ | |
self.g1_conv(downsample_groups(g[4], ratio=1/16)) | |
with torch.cuda.amp.autocast(enabled=False): | |
g = g.float() | |
h = h.float() | |
values = self.transform(torch.cat([g, h], dim=2)) | |
new_h = _recurrent_update(h, values) | |
return new_h | |
class SensoryUpdater(nn.Module): | |
# Used in the decoder, multi-scale feature + GRU | |
def __init__(self, g_dims: List[int], mid_dim: int, sensory_dim: int): | |
super().__init__() | |
self.g16_conv = GConv2d(g_dims[0], mid_dim, kernel_size=1) | |
self.g8_conv = GConv2d(g_dims[1], mid_dim, kernel_size=1) | |
self.g4_conv = GConv2d(g_dims[2], mid_dim, kernel_size=1) | |
self.transform = GConv2d(mid_dim + sensory_dim, sensory_dim * 3, kernel_size=3, padding=1) | |
nn.init.xavier_normal_(self.transform.weight) | |
def forward(self, g: torch.Tensor, h: torch.Tensor) -> torch.Tensor: | |
g = self.g16_conv(g[0]) + self.g8_conv(downsample_groups(g[1], ratio=1/2)) + \ | |
self.g4_conv(downsample_groups(g[2], ratio=1/4)) | |
with torch.cuda.amp.autocast(enabled=False): | |
g = g.float() | |
h = h.float() | |
values = self.transform(torch.cat([g, h], dim=2)) | |
new_h = _recurrent_update(h, values) | |
return new_h | |
class SensoryDeepUpdater(nn.Module): | |
def __init__(self, f_dim: int, sensory_dim: int): | |
super().__init__() | |
self.transform = GConv2d(f_dim + sensory_dim, sensory_dim * 3, kernel_size=3, padding=1) | |
nn.init.xavier_normal_(self.transform.weight) | |
def forward(self, g: torch.Tensor, h: torch.Tensor) -> torch.Tensor: | |
with torch.cuda.amp.autocast(enabled=False): | |
g = g.float() | |
h = h.float() | |
values = self.transform(torch.cat([g, h], dim=2)) | |
new_h = _recurrent_update(h, values) | |
return new_h | |
class ResBlock(nn.Module): | |
def __init__(self, in_dim: int, out_dim: int): | |
super().__init__() | |
if in_dim == out_dim: | |
self.downsample = nn.Identity() | |
else: | |
self.downsample = nn.Conv2d(in_dim, out_dim, kernel_size=1) | |
self.conv1 = nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1) | |
self.conv2 = nn.Conv2d(out_dim, out_dim, kernel_size=3, padding=1) | |
def forward(self, g: torch.Tensor) -> torch.Tensor: | |
out_g = self.conv1(F.relu(g)) | |
out_g = self.conv2(F.relu(out_g)) | |
g = self.downsample(g) | |
return out_g + g |