|
import gradio as gr |
|
import spaces |
|
|
|
from threading import Thread |
|
from torch import bfloat16 |
|
from transformers import Qwen2VLForConditionalGeneration, Qwen2VLProcessor, TextIteratorStreamer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
|
|
model_path = "Pectics/Softie-VL-7B-250123" |
|
|
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
model_path, |
|
torch_dtype=bfloat16, |
|
|
|
device_map="auto", |
|
) |
|
min_pixels = 256 * 28 * 28 |
|
max_pixels = 1280 * 28 * 28 |
|
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels) |
|
|
|
@spaces.GPU |
|
def respond( |
|
message, |
|
history, |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
for m in history: |
|
messages.append({"role": m["role"], "content": m["content"]}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
text_inputs = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text_inputs], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
).to("cuda") |
|
|
|
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) |
|
kwargs = dict( |
|
**inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
) |
|
thread = Thread(target=model.generate, kwargs=kwargs) |
|
thread.start() |
|
|
|
response = "" |
|
for token in streamer: |
|
response += token |
|
yield response |
|
|
|
app = gr.ChatInterface( |
|
respond, |
|
type="messages", |
|
additional_inputs=[ |
|
gr.Textbox(value="You are Softie, a helpful assistant.", label="系统设定"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="最大生成长度"), |
|
gr.Slider(minimum=0.01, maximum=4.0, value=0.75, step=0.01, label="温度系数(Temperature)"), |
|
gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.01, label="核取样系数(Top-p)"), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
app.launch() |
|
|