import gradio as gr import pandas as pd import joblib # Load pre-trained model and dataset data = pd.read_csv('Iris.csv') data.drop(columns=['Id'], inplace=True) # Load the saved model model = joblib.load('model.pkl') def classify_iris(sepal_length, sepal_width, petal_length, petal_width): """Classify iris species based on input features.""" input_features = [[sepal_length, sepal_width, petal_length, petal_width]] prediction = model.predict(input_features)[0] return prediction # Define the Gradio interface inputs = [ gr.Number(label="Sepal Length (cm)"), gr.Number(label="Sepal Width (cm)"), gr.Number(label="Petal Length (cm)"), gr.Number(label="Petal Width (cm)") ] outputs = gr.Textbox(label="Predicted Iris Species") description = "This app classifies iris species (Setosa, Versicolor, Virginica) based on the given features." gr.Interface(fn=classify_iris, inputs=inputs, outputs=outputs, title="Iris Species Classifier", description=description).launch()